Modern HTTPS mechanisms such as Encrypted Client Hello (ECH) and encrypted DNS improve privacy but remain vulnerable to website fingerprinting (WF) attacks, where adversaries infer visited sites from encrypted traffic patterns. Existing WF methods rely on supervised learning with site-specific labeled traces, which limits scalability and fails to handle previously unseen websites. We address these limitations by reformulating WF as a zero-shot cross-modal retrieval problem and introducing STAR. STAR learns a joint embedding space for encrypted traffic traces and crawl-time logic profiles using a dual-encoder architecture. Trained on 150K automatically collected traffic-logic pairs with contrastive and consistency objectives and structure-aware augmentation, STAR retrieves the most semantically aligned profile for a trace without requiring target-side traffic during training. Experiments on 1,600 unseen websites show that STAR achieves 87.9 percent top-1 accuracy and 0.963 AUC in open-world detection, outperforming supervised and few-shot baselines. Adding an adapter with only four labeled traces per site further boosts top-5 accuracy to 98.8 percent. Our analysis reveals intrinsic semantic-traffic alignment in modern web protocols, identifying semantic leakage as the dominant privacy risk in encrypted HTTPS traffic. We release STAR's datasets and code to support reproducibility and future research.
The routing protocol for low-power and lossy networks (RPL) has become the de facto routing standard for resource-constrained IoT systems, but its lightweight design exposes critical vulnerabilities to a wide range of routing-layer attacks such as hello flood, decreased rank, and version number manipulation. Traditional countermeasures, including protocol-level modifications and machine learning classifiers, can achieve high accuracy against known threats, yet they fail when confronted with novel or zero-day attacks unless fully retrained, an approach that is impractical for dynamic IoT environments. In this paper, we investigate incremental learning as a practical and adaptive strategy for intrusion detection in RPL-based networks. We systematically evaluate five model families, including ensemble models and deep learning models. Our analysis highlights that incremental learning not only restores detection performance on new attack classes but also mitigates catastrophic forgetting of previously learned threats, all while reducing training time compared to full retraining. By combining five diverse models with attack-specific analysis, forgetting behavior, and time efficiency, this study provides systematic evidence that incremental learning offers a scalable pathway to maintain resilient intrusion detection in evolving RPL-based IoT networks.
Federated Learning has recently been utilized to collaboratively fine-tune foundation models across multiple clients. Notably, federated low-rank adaptation LoRA-based fine-tuning methods have recently gained attention, which allows clients to fine-tune FMs with a small portion of trainable parameters locally. However, most existing methods do not account for the heterogeneous resources of clients or lack an effective local training strategy to maximize global fine-tuning performance under limited resources. In this work, we propose Fed-HeLLo, a novel federated LoRA-based fine-tuning framework that enables clients to collaboratively fine-tune an FM with different local trainable LoRA layers. To ensure its effectiveness, we develop several heterogeneous LoRA allocation (HLA) strategies that adaptively allocate local trainable LoRA layers based on clients' resource capabilities and the layer importance. Specifically, based on the dynamic layer importance, we design a Fisher Information Matrix score-based HLA that leverages dynamic gradient norm information. To better stabilize the training process, we consider the intrinsic importance of LoRA layers and design a Geometrically-Defined HLA strategy. It shapes the collective distribution of trainable LoRA layers into specific geometric patterns, such as Triangle, Inverted Triangle, Bottleneck, and Uniform. Moreover, we extend GD-HLA into a randomized version, named Randomized Geometrically-Defined HLA, for enhanced model accuracy with randomness. By co-designing the proposed HLA strategies, we incorporate both the dynamic and intrinsic layer importance into the design of our HLA strategy. We evaluate our approach on five datasets under diverse federated LoRA fine-tuning settings, covering three levels of data distribution from IID to extreme Non-IID. Results show that Fed-HeLLo with HLA strategies is both effective and efficient.
In this contribution, we examine the capability of private GPTs to automatically generate executable test code based on requirements. More specifically, we use acceptance criteria as input, formulated as part of epics, or stories, which are typically used in modern development processes. This gives product owners, or business intelligence, respectively, a way to directly produce testable criteria through the use of LLMs. We explore the quality of the so-produced tests in two ways: i) directly by letting the LLM generate code from requirements, ii) through an intermediate step using Gherkin syntax. As a result, it turns out that the two-step procedure yields better results -where we define better in terms of human readability and best coding practices, i.e. lines of code and use of additional libraries typically used in testing. Concretely, we evaluate prompt effectiveness across two scenarios: a simple "Hello World" program and a digit classification model, showing that structured prompts lead to higher-quality test outputs.
While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.
Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups.
Encrypted traffic classification (TC) methods must adapt to new protocols and extensions as well as to advancements in other machine learning fields. In this paper, we follow a transfer learning setup best known from computer vision. We first pretrain an embedding model on a complex task with a large number of classes and then transfer it to five well-known TC datasets. The pretraining task is recognition of SNI domains in encrypted QUIC traffic, which in itself is a problem for network monitoring due to the growing adoption of TLS Encrypted Client Hello. Our training pipeline -- featuring a disjoint class setup, ArcFace loss function, and a modern deep learning architecture -- aims to produce universal embeddings applicable across tasks. The proposed solution, based on nearest neighbors search in the embedding space, surpasses SOTA performance on four of the five TC datasets. A comparison with a baseline method utilizing raw packet sequences revealed unexpected findings with potential implications for the broader TC field. We published the model architecture, trained weights, and transfer learning experiments.
We focus on human-robot collaborative transport, in which a robot and a user collaboratively move an object to a goal pose. In the absence of explicit communication, this problem is challenging because it demands tight implicit coordination between two heterogeneous agents, who have very different sensing, actuation, and reasoning capabilities. Our key insight is that the two agents can coordinate fluently by encoding subtle, communicative signals into actions that affect the state of the transported object. To this end, we design an inference mechanism that probabilistically maps observations of joint actions executed by the two agents to a set of joint strategies of workspace traversal. Based on this mechanism, we define a cost representing the human's uncertainty over the unfolding traversal strategy and introduce it into a model predictive controller that balances between uncertainty minimization and efficiency maximization. We deploy our framework on a mobile manipulator (Hello Robot Stretch) and evaluate it in a within-subjects lab study (N=24). We show that our framework enables greater team performance and empowers the robot to be perceived as a significantly more fluent and competent partner compared to baselines lacking a communicative mechanism.
Street cats in urban areas often rely on human intervention for survival, leading to challenges in population control and welfare management. In April 2023, Hello Inc., a Chinese urban mobility company, launched the Hello Street Cat initiative to address these issues. The project deployed over 21,000 smart feeding stations across 14 cities in China, integrating livestreaming cameras and treat dispensers activated through user donations. It also promotes the Trap-Neuter-Return (TNR) method, supported by a community-driven platform, HelloStreetCatWiki, where volunteers catalog and identify cats. However, manual identification is inefficient and unsustainable, creating a need for automated solutions. This study explores Deep Learning-based models for re-identifying street cats in the Hello Street Cat initiative. A dataset of 2,796 images of 69 cats was used to train Siamese Networks with EfficientNetB0, MobileNet and VGG16 as base models, evaluated under contrastive and triplet loss functions. VGG16 paired with contrastive loss emerged as the most effective configuration, achieving up to 97% accuracy and an F1 score of 0.9344 during testing. The approach leverages image augmentation and dataset refinement to overcome challenges posed by limited data and diverse visual variations. These findings underscore the potential of automated cat re-identification to streamline population monitoring and welfare efforts. By reducing reliance on manual processes, the method offers a scalable and reliable solution for communitydriven initiatives. Future research will focus on expanding datasets and developing real-time implementations to enhance practicality in large-scale deployments.
We propose Audio Noise Awareness using Visuals of Indoors for NAVIgation for quieter robot path planning. While humans are naturally aware of the noise they make and its impact on those around them, robots currently lack this awareness. A key challenge in achieving audio awareness for robots is estimating how loud will the robot's actions be at a listener's location? Since sound depends upon the geometry and material composition of rooms, we train the robot to passively perceive loudness using visual observations of indoor environments. To this end, we generate data on how loud an 'impulse' sounds at different listener locations in simulated homes, and train our Acoustic Noise Predictor (ANP). Next, we collect acoustic profiles corresponding to different actions for navigation. Unifying ANP with action acoustics, we demonstrate experiments with wheeled (Hello Robot Stretch) and legged (Unitree Go2) robots so that these robots adhere to the noise constraints of the environment. See code and data at https://anavi-corl24.github.io/