Abstract:Unsupervised node representation learning aims to obtain meaningful node embeddings without relying on node labels. To achieve this, graph convolution, which aggregates information from neighboring nodes, is commonly employed to encode node features and graph topology. However, excessive reliance on graph convolution can be suboptimal-especially in non-homophilic graphs-since it may yield unduly similar embeddings for nodes that differ in their features or topological properties. As a result, adjusting the degree of graph convolution usage has been actively explored in supervised learning settings, whereas such approaches remain underexplored in unsupervised scenarios. To tackle this, we propose FUEL, which adaptively learns the adequate degree of graph convolution usage by aiming to enhance intra-class similarity and inter-class separability in the embedding space. Since classes are unknown, FUEL leverages node features to identify node clusters and treats these clusters as proxies for classes. Through extensive experiments using 15 baseline methods and 14 benchmark datasets, we demonstrate the effectiveness of FUEL in downstream tasks, achieving state-of-the-art performance across graphs with diverse levels of homophily.




Abstract:Generalizing a pretrained model to unseen datasets without retraining is an essential step toward a foundation model. However, achieving such cross-dataset, fully inductive inference is difficult in graph-structured data where feature spaces vary widely in both dimensionality and semantics. Any transformation in the feature space can easily violate the inductive applicability to unseen datasets, strictly limiting the design space of a graph model. In this work, we introduce the view space, a novel representational axis in which arbitrary graphs can be naturally encoded in a unified manner. We then propose Graph View Transformation (GVT), a node- and feature-permutation-equivariant mapping in the view space. GVT serves as the building block for Recurrent GVT, a fully inductive model for node representation learning. Pretrained on OGBN-Arxiv and evaluated on 27 node-classification benchmarks, Recurrent GVT outperforms GraphAny, the prior fully inductive graph model, by +8.93% and surpasses 12 individually tuned GNNs by at least +3.30%. These results establish the view space as a principled and effective ground for fully inductive node representation learning.
Abstract:Recently, large language models (LLMs) have been widely used as recommender systems, owing to their strong reasoning capability and their effectiveness in handling cold-start items. To better adapt LLMs for recommendation, retrieval-augmented generation (RAG) has been incorporated. Most existing RAG methods are user-based, retrieving purchase patterns of users similar to the target user and providing them to the LLM. In this work, we propose ItemRAG, an item-based RAG method for LLM-based recommendation that retrieves relevant items (rather than users) from item-item co-purchase histories. ItemRAG helps LLMs capture co-purchase patterns among items, which are beneficial for recommendations. Especially, our retrieval strategy incorporates semantically similar items to better handle cold-start items and uses co-purchase frequencies to improve the relevance of the retrieved items. Through extensive experiments, we demonstrate that ItemRAG consistently (1) improves the zero-shot LLM-based recommender by up to 43% in Hit-Ratio-1 and (2) outperforms user-based RAG baselines under both standard and cold-start item recommendation settings.
Abstract:Few-shot node classification on hypergraphs requires models that generalize from scarce labels while capturing high-order structures. Existing hypergraph neural networks (HNNs) effectively encode such structures but often suffer from overfitting and scalability issues due to complex, black-box architectures. In this work, we propose ZEN (Zero-Parameter Hypergraph Neural Network), a fully linear and parameter-free model that achieves both expressiveness and efficiency. Built upon a unified formulation of linearized HNNs, ZEN introduces a tractable closed-form solution for the weight matrix and a redundancy-aware propagation scheme to avoid iterative training and to eliminate redundant self information. On 11 real-world hypergraph benchmarks, ZEN consistently outperforms eight baseline models in classification accuracy while achieving up to 696x speedups over the fastest competitor. Moreover, the decision process of ZEN is fully interpretable, providing insights into the characteristic of a dataset. Our code and datasets are fully available at https://github.com/chaewoonbae/ZEN.
Abstract:While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.
Abstract:We revisit DropEdge, a data augmentation technique for GNNs which randomly removes edges to expose diverse graph structures during training. While being a promising approach to effectively reduce overfitting on specific connections in the graph, we observe that its potential performance gain in supervised learning tasks is significantly limited. To understand why, we provide a theoretical analysis showing that the limited performance of DropEdge comes from the fundamental limitation that exists in many GNN architectures. Based on this analysis, we propose Aggregation Buffer, a parameter block specifically designed to improve the robustness of GNNs by addressing the limitation of DropEdge. Our method is compatible with any GNN model, and shows consistent performance improvements on multiple datasets. Moreover, our method effectively addresses well-known problems such as degree bias or structural disparity as a unifying solution. Code and datasets are available at https://github.com/dooho00/agg-buffer.
Abstract:Can large language models (LLMs) implement computations of psychopathology? An effective approach to the question hinges on addressing two factors. First, for conceptual validity, we require a general and computational account of psychopathology that is applicable to computational entities without biological embodiment or subjective experience. Second, mechanisms underlying LLM behaviors need to be studied for better methodological validity. Thus, we establish a computational-theoretical framework to provide an account of psychopathology applicable to LLMs. To ground the theory for empirical analysis, we also propose a novel mechanistic interpretability method alongside a tailored empirical analytic framework. Based on the frameworks, we conduct experiments demonstrating three key claims: first, that distinct dysfunctional and problematic representational states are implemented in LLMs; second, that their activations can spread and self-sustain to trap LLMs; and third, that dynamic, cyclic structural causal models encoded in the LLMs underpin these patterns. In concert, the empirical results corroborate our hypothesis that network-theoretic computations of psychopathology have already emerged in LLMs. This suggests that certain LLM behaviors mirroring psychopathology may not be a superficial mimicry but a feature of their internal processing. Thus, our work alludes to the possibility of AI systems with psychopathological behaviors in the near future.
Abstract:Multi-criteria (MC) recommender systems, which utilize MC rating information for recommendation, are increasingly widespread in various e-commerce domains. However, the MC recommendation using training-based collaborative filtering, requiring consideration of multiple ratings compared to single-criterion counterparts, often poses practical challenges in achieving state-of-the-art performance along with scalable model training. To solve this problem, we propose CA-GF, a training-free MC recommendation method, which is built upon criteria-aware graph filtering for efficient yet accurate MC recommendations. Specifically, first, we construct an item-item similarity graph using an MC user-expansion graph. Next, we design CA-GF composed of the following key components, including 1) criterion-specific graph filtering where the optimal filter for each criterion is found using various types of polynomial low-pass filters and 2) criteria preference-infused aggregation where the smoothed signals from each criterion are aggregated. We demonstrate that CA-GF is (a) efficient: providing the computational efficiency, offering the extremely fast runtime of less than 0.2 seconds even on the largest benchmark dataset, (b) accurate: outperforming benchmark MC recommendation methods, achieving substantial accuracy gains up to 24% compared to the best competitor, and (c) interpretable: providing interpretations for the contribution of each criterion to the model prediction based on visualizations.




Abstract:In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection. Meanwhile, the need to systematically understand how LLMs can further revolutionize the field also becomes urgent. In this work, we--a multidisciplinary team of researchers spanning computer science and political science--present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science. Specifically, we first introduce a fundamental taxonomy classifying the existing explorations into two perspectives: political science and computational methodologies. In particular, from the political science perspective, we highlight the role of LLMs in automating predictive and generative tasks, simulating behavior dynamics, and improving causal inference through tools like counterfactual generation; from a computational perspective, we introduce advancements in data preparation, fine-tuning, and evaluation methods for LLMs that are tailored to political contexts. We identify key challenges and future directions, emphasizing the development of domain-specific datasets, addressing issues of bias and fairness, incorporating human expertise, and redefining evaluation criteria to align with the unique requirements of computational political science. Political-LLM seeks to serve as a guidebook for researchers to foster an informed, ethical, and impactful use of Artificial Intelligence in political science. Our online resource is available at: http://political-llm.org/.
Abstract:Graph autoencoders (Graph-AEs) learn representations of given graphs by aiming to accurately reconstruct them. A notable application of Graph-AEs is graph-level anomaly detection (GLAD), whose objective is to identify graphs with anomalous topological structures and/or node features compared to the majority of the graph population. Graph-AEs for GLAD regard a graph with a high mean reconstruction error (i.e. mean of errors from all node pairs and/or nodes) as anomalies. Namely, the methods rest on the assumption that they would better reconstruct graphs with similar characteristics to the majority. We, however, report non-trivial counter-examples, a phenomenon we call reconstruction flip, and highlight the limitations of the existing Graph-AE-based GLAD methods. Specifically, we empirically and theoretically investigate when this assumption holds and when it fails. Through our analyses, we further argue that, while the reconstruction errors for a given graph are effective features for GLAD, leveraging the multifaceted summaries of the reconstruction errors, beyond just mean, can further strengthen the features. Thus, we propose a novel and simple GLAD method, named MUSE. The key innovation of MUSE involves taking multifaceted summaries of reconstruction errors as graph features for GLAD. This surprisingly simple method obtains SOTA performance in GLAD, performing best overall among 14 methods across 10 datasets.