High-quality relevance judgements over large query sets are essential for evaluating Information Retrieval (IR) systems, yet manual annotation remains costly and time-consuming. Large Language Models (LLMs) have recently shown promise as automatic relevance assessors, but their reliability is still limited. Most existing approaches rely on zero-shot prompting or In-Context Learning (ICL) with a small number of labeled examples. However, standard ICL treats examples as independent instances and fails to explicitly capture the underlying relevance criteria of a topic, restricting its ability to generalize to unseen query-document pairs. To address this limitation, we introduce Relevance Context Learning (RCL), a novel framework that leverages human relevance judgements to explicitly model topic-specific relevance criteria. Rather than directly using labeled examples for in-context prediction, RCL first prompts an LLM (Instructor LLM) to analyze sets of judged query-document pairs and generate explicit narratives that describe what constitutes relevance for a given topic. These relevance narratives are then used as structured prompts to guide a second LLM (Assessor LLM) in producing relevance judgements. To evaluate RCL in a realistic data collection setting, we propose a hybrid pooling strategy in which a shallow depth-\textit{k} pool from participating systems is judged by human assessors, while the remaining documents are labeled by LLMs. Experimental results demonstrate that RCL substantially outperforms zero-shot prompting and consistently improves over standard ICL. Overall, our findings indicate that transforming relevance examples into explicit, context-aware relevance narratives is a more effective way of exploiting human judgements for LLM-based IR dataset construction.
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retrieval framework that enables fast alignment across agent memory paradigms. MemAdapter adopts a two-stage training strategy: (1) training a generative subgraph retriever from the unified memory space, and (2) adapting the retriever to unseen memory paradigms by training a lightweight alignment module through contrastive learning. This design improves the flexibility for memory retrieval and substantially reduces alignment cost across paradigms. Comprehensive experiments on three public evaluation benchmarks demonstrate that the generative subgraph retriever consistently outperforms five strong agent memory systems across three memory paradigms and agent model scales. Notably, MemAdapter completes cross-paradigm alignment within 13 minutes on a single GPU, achieving superior performance over original memory retrievers with less than 5% of training compute. Furthermore, MemAdapter enables effective zero-shot fusion across memory paradigms, highlighting its potential as a plug-and-play solution for agent memory systems.
Geometric foundation models show promise in 3D reconstruction, yet their progress is severely constrained by the scarcity of diverse, large-scale 3D annotations. While Internet videos offer virtually unlimited raw data, utilizing them as a scaling source for geometric learning is challenging due to the absence of ground-truth geometry and the presence of observational noise. To address this, we propose SAGE, a framework for Scalable Adaptation of GEometric foundation models from raw video streams. SAGE leverages a hierarchical mining pipeline to transform videos into training trajectories and hybrid supervision: (1) Informative training trajectory selection; (2) Sparse Geometric Anchoring via SfM point clouds for global structural guidance; and (3) Dense Differentiable Consistency via 3D Gaussian rendering for multi-view constraints. To prevent catastrophic forgetting, we introduce a regularization strategy using anchor data. Extensive experiments show that SAGE significantly enhances zero-shot generalization, reducing Chamfer Distance by 20-42% on unseen benchmarks (7Scenes, TUM-RGBD, Matterport3D) compared to state-of-the-art baselines. To our knowledge, SAGE pioneers the adaptation of geometric foundation models via Internet video, establishing a scalable paradigm for general-purpose 3D learning.
We propose LCLA (Language-Conditioned Latent Alignment), a framework for vision-language navigation that learns modular perception-action interfaces by aligning sensory observations to a latent representation of an expert policy. The expert is first trained with privileged state information, inducing a latent space sufficient for control, after which its latent interface and action head are frozen. A lightweight adapter is then trained to map raw visual-language observations, via a frozen vision-language model, into the expert's latent space, reducing the problem of visuomotor learning to supervised latent alignment rather than end-to-end policy optimization. This decoupling enforces a stable contract between perception and control, enabling expert behavior to be reused across sensing modalities and environmental variations. We instantiate LCLA and evaluate it on a vision-language indoor navigation task, where aligned latent spaces yield strong in-distribution performance and robust zero-shot generalization to unseen environments, lighting conditions, and viewpoints while remaining lightweight at inference time.
The application of generative modeling to many-body physics offers a promising pathway for analyzing high-dimensional state spaces of spin systems. However, unlike computer vision tasks where visual fidelity suffices, physical systems require the rigorous reproduction of higher-order statistical moments and thermodynamic quantities. While Score-Based Generative Models (SGMs) have emerged as a powerful tool, their standard formulation on Euclidean embedding space is ill-suited for continuous spin systems, where variables inherently reside on a manifold. In this work, we demonstrate that training on the Euclidean space compromises the model's ability to learn the target distribution as it prioritizes to learn the manifold constraints. We address this limitation by proposing the use of Manifold-Aware Score-Based Generative Modeling framework applied to the 64x64 2D XY model (a 4096-dimensional torus). We show that our method estimates the theoretical Boltzmann score with superior precision compared to standard diffusion models. Consequently, we successfully capture the Berezinskii-Kosterlitz Thouless (BKT) phase transition and accurately reproduce second-moment quantities, such as heat capacity without explicit feature engineering. Furthermore, we demonstrate zero-shot generalization to unseen lattice sizes, accurately recovering the physics of variable system scales without retraining. Since this approach bypasses domain-specific feature engineering, it remains intrinsically generalizable to other continuous spin systems.
Learning-based whole-body controllers have become a key driver for humanoid robots, yet most existing approaches require robot-specific training. In this paper, we study the problem of cross-embodiment humanoid control and show that a single policy can robustly generalize across a wide range of humanoid robot designs with one-time training. We introduce XHugWBC, a novel cross-embodiment training framework that enables generalist humanoid control through: (1) physics-consistent morphological randomization, (2) semantically aligned observation and action spaces across diverse humanoid robots, and (3) effective policy architectures modeling morphological and dynamical properties. XHugWBC is not tied to any specific robot. Instead, it internalizes a broad distribution of morphological and dynamical characteristics during training. By learning motion priors from diverse randomized embodiments, the policy acquires a strong structural bias that supports zero-shot transfer to previously unseen robots. Experiments on twelve simulated humanoids and seven real-world robots demonstrate the strong generalization and robustness of the resulting universal controller.
Understanding visual degradations is a critical yet challenging problem in computer vision. While recent Vision-Language Models (VLMs) excel at qualitative description, they often fall short in understanding the parametric physics underlying image degradations. In this work, we redefine degradation understanding as a hierarchical structured prediction task, necessitating the concurrent estimation of degradation types, parameter keys, and their continuous physical values. Although these sub-tasks operate in disparate spaces, we prove that they can be unified under one autoregressive next-token prediction paradigm, whose error is bounded by the value-space quantization grid. Building on this insight, we introduce DU-VLM, a multimodal chain-of-thought model trained with supervised fine-tuning and reinforcement learning using structured rewards. Furthermore, we show that DU-VLM can serve as a zero-shot controller for pre-trained diffusion models, enabling high-fidelity image restoration without fine-tuning the generative backbone. We also introduce \textbf{DU-110k}, a large-scale dataset comprising 110,000 clean-degraded pairs with grounded physical annotations. Extensive experiments demonstrate that our approach significantly outperforms generalist baselines in both accuracy and robustness, exhibiting generalization to unseen distributions.
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
This paper proposes a novel Variational Graph-to-Scheduler (VG2S) framework for solving the Job Shop Scheduling Problem (JSSP), a critical task in manufacturing that directly impacts operational efficiency and resource utilization. Conventional Deep Reinforcement Learning (DRL) approaches often face challenges such as non-stationarity during training and limited generalization to unseen problem instances because they optimize representation learning and policy execution simultaneously. To address these issues, we introduce variational inference to the JSSP domain for the first time and derive a probabilistic objective based on the Evidence of Lower Bound (ELBO) with maximum entropy reinforcement learning. By mathematically decoupling representation learning from policy optimization, the VG2S framework enables the agent to learn robust structural representations of scheduling instances through a variational graph encoder. This approach significantly enhances training stability and robustness against hyperparameter variations. Extensive experiments demonstrate that the proposed method exhibits superior zero-shot generalization compared with state-of-the-art DRL baselines and traditional dispatching rules, particularly on large-scale and challenging benchmark instances such as DMU and SWV.