Deception detection is the process of identifying deceptive or misleading behavior in text or speech data.
Misinformation on social media poses a critical threat to information credibility, as its diverse and context-dependent nature complicates detection. Large language model-empowered multi-agent systems (MAS) present a promising paradigm that enables cooperative reasoning and collective intelligence to combat this threat. However, conventional MAS suffer from an information-drowning problem, where abundant truthful content overwhelms sparse and weak deceptive cues. With full input access, agents tend to focus on dominant patterns, and inter-agent communication further amplifies this bias. To tackle this issue, we propose PAMAS, a multi-agent framework with perspective aggregation, which employs hierarchical, perspective-aware aggregation to highlight anomaly cues and alleviate information drowning. PAMAS organizes agents into three roles: Auditors, Coordinators, and a Decision-Maker. Auditors capture anomaly cues from specialized feature subsets; Coordinators aggregate their perspectives to enhance coverage while maintaining diversity; and the Decision-Maker, equipped with evolving memory and full contextual access, synthesizes all subordinate insights to produce the final judgment. Furthermore, to improve efficiency in multi-agent collaboration, PAMAS incorporates self-adaptive mechanisms for dynamic topology optimization and routing-based inference, enhancing both efficiency and scalability. Extensive experiments on multiple benchmark datasets demonstrate that PAMAS achieves superior accuracy and efficiency, offering a scalable and trustworthy way for misinformation detection.
In multimodal misinformation, deception usually arises not just from pixel-level manipulations in an image, but from the semantic and contextual claim jointly expressed by the image-text pair. Yet most deepfake detectors, engineered to detect pixel-level forgeries, do not account for claim-level meaning, despite their growing integration in automated fact-checking (AFC) pipelines. This raises a central scientific and practical question: Do pixel-level detectors contribute useful signal for verifying image-text claims, or do they instead introduce misleading authenticity priors that undermine evidence-based reasoning? We provide the first systematic analysis of deepfake detectors in the context of multimodal misinformation detection. Using two complementary benchmarks, MMFakeBench and DGM4, we evaluate: (1) state-of-the-art image-only deepfake detectors, (2) an evidence-driven fact-checking system that performs tool-guided retrieval via Monte Carlo Tree Search (MCTS) and engages in deliberative inference through Multi-Agent Debate (MAD), and (3) a hybrid fact-checking system that injects detector outputs as auxiliary evidence. Results across both benchmark datasets show that deepfake detectors offer limited standalone value, achieving F1 scores in the range of 0.26-0.53 on MMFakeBench and 0.33-0.49 on DGM4, and that incorporating their predictions into fact-checking pipelines consistently reduces performance by 0.04-0.08 F1 due to non-causal authenticity assumptions. In contrast, the evidence-centric fact-checking system achieves the highest performance, reaching F1 scores of approximately 0.81 on MMFakeBench and 0.55 on DGM4. Overall, our findings demonstrate that multimodal claim verification is driven primarily by semantic understanding and external evidence, and that pixel-level artifact signals do not reliably enhance reasoning over real-world image-text misinformation.
The Uniform Resource Locator (URL), introduced in a connectivity-first era to define access and locate resources, remains historically limited, lacking future-proof mechanisms for security, trust, or resilience against fraud and abuse, despite the introduction of reactive protections like HTTPS during the cybersecurity era. In the current AI-first threatscape, deceptive URLs have reached unprecedented sophistication due to the widespread use of generative AI by cybercriminals and the AI-vs-AI arms race to produce context-aware phishing websites and URLs that are virtually indistinguishable to both users and traditional detection tools. Although AI-generated phishing accounted for a small fraction of filter-bypassing attacks in 2024, phishing volume has escalated over 4,000% since 2022, with nearly 50% more attacks evading detection. At the rate the threatscape is escalating, and phishing tactics are emerging faster than labeled data can be produced, zero-shot and few-shot learning with large language models (LLMs) offers a timely and adaptable solution, enabling generalization with minimal supervision. Given the critical importance of phishing URL detection in large-scale cybersecurity defense systems, we present a comprehensive benchmark of LLMs under a unified zero-shot and few-shot prompting framework and reveal operational trade-offs. Our evaluation uses a balanced dataset with consistent prompts, offering detailed analysis of performance, generalization, and model efficacy, quantified by accuracy, precision, recall, F1 score, AUROC, and AUPRC, to reflect both classification quality and practical utility in threat detection settings. We conclude few-shot prompting improves performance across multiple LLMs.
As deepfake videos become increasingly difficult for people to recognise, understanding the strategies humans use is key to designing effective media literacy interventions. We conducted a study with 195 participants between the ages of 21 and 40, who judged real and deepfake videos, rated their confidence, and reported the cues they relied on across visual, audio, and knowledge strategies. Participants were more accurate with real videos than with deepfakes and showed lower expected calibration error for real content. Through association rule mining, we identified cue combinations that shaped performance. Visual appearance, vocal, and intuition often co-occurred for successful identifications, which highlights the importance of multimodal approaches in human detection. Our findings show which cues help or hinder detection and suggest directions for designing media literacy tools that guide effective cue use. Building on these insights can help people improve their identification skills and become more resilient to deceptive digital media.
Humans develop a series of cognitive defenses, known as epistemic vigilance, to combat risks of deception and misinformation from everyday interactions. Developing safeguards for LLMs inspired by this mechanism might be particularly helpful for their application in high-stakes tasks such as automating compliance with data privacy laws. In this paper, we introduce Dynamic Epistemic Fallback (DEF), a dynamic safety protocol for improving an LLM's inference-time defenses against deceptive attacks that make use of maliciously perturbed policy texts. Through various levels of one-sentence textual cues, DEF nudges LLMs to flag inconsistencies, refuse compliance, and fallback to their parametric knowledge upon encountering perturbed policy texts. Using globally recognized legal policies such as HIPAA and GDPR, our empirical evaluations report that DEF effectively improves the capability of frontier LLMs to detect and refuse perturbed versions of policies, with DeepSeek-R1 achieving a 100% detection rate in one setting. This work encourages further efforts to develop cognitively inspired defenses to improve LLM robustness against forms of harm and deception that exploit legal artifacts.
Frontier language model agents can exhibit misaligned behaviors, including deception, exploiting reward hacks, and pursuing hidden objectives. To control potentially misaligned agents, we can use LLMs themselves to monitor for misbehavior. In this paper, we study how information access affects LLM monitor performance. While one might expect that monitors perform better when they have access to more of the monitored agents' reasoning and actions, we find that contemporary systems often perform better with less information, a phenomenon we call the less-is-more effect for automated oversight. We demonstrate this phenomenon, and analyze the conditions under which it occurs, in three evaluation environments where agents must conduct sabotage while evading monitors. Motivated by the less-is-more effect, we introduce extract-and-evaluate (EaE) monitoring--a new hierarchical approach where one monitor isolates relevant excerpts from the monitored agent's trajectory and a separate monitor scores them. In BigCodeBench-Sabotage with GPT-4.1-mini as the monitor model, EaE improves sabotage detection rates by 16.8 percentage points over the next-best monitor without increasing the false positive rate. In other settings, EaE either outperforms or is competitive with baselines. In addition, we find that agents unaware of being monitored can be caught much more easily and that monitors scoring longer reasoning traces gain more from information filtering. Lastly, we conduct a cost-performance analysis and find that Gemini and Claude models with monitoring techniques that involve information filtering occupy much of the Pareto frontier.
Conformal prediction (CP) has become a cornerstone of distribution-free uncertainty quantification, conventionally evaluated by its coverage and interval length. This work critically examines the sufficiency of these standard metrics. We demonstrate that the interval length might be deceptively improved through a counter-intuitive approach termed Prejudicial Trick (PT), while the coverage remains valid. Specifically, for any given test sample, PT probabilistically returns an interval, which is either null or constructed using an adjusted confidence level, thereby preserving marginal coverage. While PT potentially yields a deceptively lower interval length, it introduces practical vulnerabilities: the same input can yield completely different prediction intervals across repeated runs of the algorithm. We formally derive the conditions under which PT achieves these misleading improvements and provides extensive empirical evidence across various regression and classification tasks. Furthermore, we introduce a new metric interval stability which helps detect whether a new CP method implicitly improves the length based on such PT-like techniques.
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
The rapid spread of multimodal fake news poses a serious societal threat, as its evolving nature and reliance on timely factual details challenge existing detection methods. Dynamic Retrieval-Augmented Generation provides a promising solution by triggering keyword-based retrieval and incorporating external knowledge, thus enabling both efficient and accurate evidence selection. However, it still faces challenges in addressing issues such as redundant retrieval, coarse similarity, and irrelevant evidence when applied to deceptive content. In this paper, we propose ExDR, an Explanation-driven Dynamic Retrieval-Augmented Generation framework for Multimodal Fake News Detection. Our framework systematically leverages model-generated explanations in both the retrieval triggering and evidence retrieval modules. It assesses triggering confidence from three complementary dimensions, constructs entity-aware indices by fusing deceptive entities, and retrieves contrastive evidence based on deception-specific features to challenge the initial claim and enhance the final prediction. Experiments on two benchmark datasets, AMG and MR2, demonstrate that ExDR consistently outperforms previous methods in retrieval triggering accuracy, retrieval quality, and overall detection performance, highlighting its effectiveness and generalization capability.
Social engineering scams increasingly employ personalized, multi-turn deception, exposing the limits of traditional detection methods. While Large Language Models (LLMs) show promise in identifying deception, their cognitive assistance potential remains underexplored. We propose ScriptMind, an integrated framework for LLM-based scam detection that bridges automated reasoning and human cognition. It comprises three components: the Crime Script Inference Task (CSIT) for scam reasoning, the Crime Script-Aware Inference Dataset (CSID) for fine-tuning small LLMs, and the Cognitive Simulation-based Evaluation of Social Engineering Defense (CSED) for assessing real-time cognitive impact. Using 571 Korean phone scam cases, we built 22,712 structured scammer-sequence training instances. Experimental results show that the 11B small LLM fine-tuned with ScriptMind outperformed GPT-4o by 13%, achieving superior performance over commercial models in detection accuracy, false-positive reduction, scammer utterance prediction, and rationale quality. Moreover, in phone scam simulation experiments, it significantly enhanced and sustained users' suspicion levels, improving their cognitive awareness of scams. ScriptMind represents a step toward human-centered, cognitively adaptive LLMs for scam defense.