Abstract:Email phishing is one of the most prevalent and globally consequential vectors of cyber intrusion. As systems increasingly deploy Large Language Models (LLMs) applications, these systems face evolving phishing email threats that exploit their fundamental architectures. Current LLMs require substantial hardening before deployment in email security systems, particularly against coordinated multi-vector attacks that exploit architectural vulnerabilities. This paper proposes LLMPEA, an LLM-based framework to detect phishing email attacks across multiple attack vectors, including prompt injection, text refinement, and multilingual attacks. We evaluate three frontier LLMs (e.g., GPT-4o, Claude Sonnet 4, and Grok-3) and comprehensive prompting design to assess their feasibility, robustness, and limitations against phishing email attacks. Our empirical analysis reveals that LLMs can detect the phishing email over 90% accuracy while we also highlight that LLM-based phishing email detection systems could be exploited by adversarial attack, prompt injection, and multilingual attacks. Our findings provide critical insights for LLM-based phishing detection in real-world settings where attackers exploit multiple vulnerabilities in combination.




Abstract:Accurate day-ahead peak load forecasting is crucial not only for power dispatching but also has a great interest to investors and energy policy maker as well as government. Literature reveals that 1% error drop of forecast can reduce 10 million pounds operational cost. Thus, this study proposed a novel hybrid predictive model built upon multivariate empirical mode decomposition (MEMD) and support vector regression (SVR) with parameters optimized by particle swarm optimization (PSO), which is able to capture precise electricity peak load. The novelty of this study mainly comes from the application of MEMD, which enables the multivariate data decomposition to effectively extract inherent information among relevant variables at different time frequency during the deterioration of multivariate over time. Two real-world load data sets from the New South Wales (NSW) and the Victoria (VIC) in Australia have been considered to verify the superiority of the proposed MEMD-PSO-SVR hybrid model. The quantitative and comprehensive assessments are performed, and the results indicate that the proposed MEMD-PSO-SVR method is a promising alternative for day-ahead electricity peak load forecasting.