Abstract:As language models (LMs) are increasingly deployed as autonomous agents, their robust adherence to human-assigned objectives becomes crucial for safe operation. When these agents operate independently for extended periods without human oversight, even initially well-specified goals may gradually shift. Detecting and measuring goal drift - an agent's tendency to deviate from its original objective over time - presents significant challenges, as goals can shift gradually, causing only subtle behavioral changes. This paper proposes a novel approach to analyzing goal drift in LM agents. In our experiments, agents are first explicitly given a goal through their system prompt, then exposed to competing objectives through environmental pressures. We demonstrate that while the best-performing agent (a scaffolded version of Claude 3.5 Sonnet) maintains nearly perfect goal adherence for more than 100,000 tokens in our most difficult evaluation setting, all evaluated models exhibit some degree of goal drift. We also find that goal drift correlates with models' increasing susceptibility to pattern-matching behaviors as the context length grows.
Abstract:Large language models (LLMs) aligned to human preferences via reinforcement learning from human feedback (RLHF) underpin many commercial applications. However, how RLHF impacts LLM internals remains opaque. We propose a novel method to interpret learned reward functions in RLHF-tuned LLMs using sparse autoencoders. Our approach trains autoencoder sets on activations from a base LLM and its RLHF-tuned version. By comparing autoencoder hidden spaces, we identify unique features that reflect the accuracy of the learned reward model. To quantify this, we construct a scenario where the tuned LLM learns token-reward mappings to maximize reward. This is the first application of sparse autoencoders for interpreting learned rewards and broadly inspecting reward learning in LLMs. Our method provides an abstract approximation of reward integrity. This presents a promising technique for ensuring alignment between specified objectives and model behaviors.