Abstract:Frontier language model agents can exhibit misaligned behaviors, including deception, exploiting reward hacks, and pursuing hidden objectives. To control potentially misaligned agents, we can use LLMs themselves to monitor for misbehavior. In this paper, we study how information access affects LLM monitor performance. While one might expect that monitors perform better when they have access to more of the monitored agents' reasoning and actions, we find that contemporary systems often perform better with less information, a phenomenon we call the less-is-more effect for automated oversight. We demonstrate this phenomenon, and analyze the conditions under which it occurs, in three evaluation environments where agents must conduct sabotage while evading monitors. Motivated by the less-is-more effect, we introduce extract-and-evaluate (EaE) monitoring--a new hierarchical approach where one monitor isolates relevant excerpts from the monitored agent's trajectory and a separate monitor scores them. In BigCodeBench-Sabotage with GPT-4.1-mini as the monitor model, EaE improves sabotage detection rates by 16.8 percentage points over the next-best monitor without increasing the false positive rate. In other settings, EaE either outperforms or is competitive with baselines. In addition, we find that agents unaware of being monitored can be caught much more easily and that monitors scoring longer reasoning traces gain more from information filtering. Lastly, we conduct a cost-performance analysis and find that Gemini and Claude models with monitoring techniques that involve information filtering occupy much of the Pareto frontier.
Abstract:AI systems are increasingly able to autonomously conduct realistic software engineering tasks, and may soon be deployed to automate machine learning (ML) R&D itself. Frontier AI systems may be deployed in safety-critical settings, including to help ensure the safety of future systems. Unfortunately, frontier and future systems may not be sufficiently trustworthy, and there is evidence that these systems may even be misaligned with their developers or users. Therefore, we investigate the capabilities of AI agents to act against the interests of their users when conducting ML engineering, by sabotaging ML models, sandbagging their performance, and subverting oversight mechanisms. First, we extend MLE-Bench, a benchmark for realistic ML tasks, with code-sabotage tasks such as implanting backdoors and purposefully causing generalisation failures. Frontier agents make meaningful progress on our sabotage tasks. In addition, we study agent capabilities to sandbag on MLE-Bench. Agents can calibrate their performance to specified target levels below their actual capability. To mitigate sabotage, we use LM monitors to detect suspicious agent behaviour, and we measure model capability to sabotage and sandbag without being detected by these monitors. Overall, monitors are capable at detecting code-sabotage attempts but our results suggest that detecting sandbagging is more difficult. Additionally, aggregating multiple monitor predictions works well, but monitoring may not be sufficiently reliable to mitigate sabotage in high-stakes domains. Our benchmark is implemented in the UK AISI's Inspect framework and we make our code publicly available at https://github.com/TeunvdWeij/ctrl-alt-deceit