Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
Long reasoning models often struggle in multilingual settings: they tend to reason in English for non-English questions; when constrained to reasoning in the question language, accuracies drop substantially. The struggle is caused by the limited abilities for both multilingual question understanding and multilingual reasoning. To address both problems, we propose TRIT (Translation-Reasoning Integrated Training), a self-improving framework that integrates the training of translation into multilingual reasoning. Without external feedback or additional multilingual data, our method jointly enhances multilingual question understanding and response generation. On MMATH, our method outperforms multiple baselines by an average of 7 percentage points, improving both answer correctness and language consistency. Further analysis reveals that integrating translation training improves cross-lingual question alignment by over 10 percentage points and enhances translation quality for both mathematical questions and general-domain text, with gains up to 8.4 COMET points on FLORES-200.
Subword tokenization critically affects Natural Language Processing (NLP) performance, yet its behavior in morphologically rich and low-resource language families remains under-explored. This study systematically compares three subword paradigms -- Byte Pair Encoding (BPE), Overlap BPE (OBPE), and Unigram Language Model -- across six Uralic languages with varying resource availability and typological diversity. Using part-of-speech (POS) tagging as a controlled downstream task, we show that OBPE consistently achieves stronger morphological alignment and higher tagging accuracy than conventional methods, particularly within the Latin-script group. These gains arise from reduced fragmentation in open-class categories and a better balance across the frequency spectrum. Transfer efficacy further depends on the downstream tagging architecture, interacting with both training volume and genealogical proximity. Taken together, these findings highlight that morphology-sensitive tokenization is not merely a preprocessing choice but a decisive factor in enabling effective cross-lingual transfer for agglutinative, low-resource languages.
Implicit discourse relation classification is a challenging task, as it requires inferring meaning from context. While contextual cues can be distributed across modalities and vary across languages, they are not always captured by text alone. To address this, we introduce an automatic method for distantly related and unrelated language pairs to construct a multilingual and multimodal dataset for implicit discourse relations in English, French, and Spanish. For classification, we propose a multimodal approach that integrates textual and acoustic information through Qwen2-Audio, allowing joint modeling of text and audio for implicit discourse relation classification across languages. We find that while text-based models outperform audio-based models, integrating both modalities can enhance performance, and cross-lingual transfer can provide substantial improvements for low-resource languages.
We present a large-scale human evaluation benchmark for assessing cultural localisation in machine translation produced by state-of-the-art multilingual large language models (LLMs). Existing MT benchmarks emphasise token-level and grammatical accuracy, but of ten overlook pragmatic and culturally grounded competencies required for real-world localisation. Building on a pilot study of 87 translations across 20 languages, we evaluate 7 multilingual LLMs across 15 target languages with 5 native-speaker raters per language. Raters scored both full-text translations and segment-level instances of culturally nuanced language (idioms, puns, holidays, and culturally embedded concepts) on an ordinal 0-3 quality scale; segment ratings additionally included an NA option for untranslated segments. Across full-text evaluations, mean overall quality is modest (1.68/3): GPT-5 (2.10/3), Claude Sonnet 3.7 (1.97/3), and Mistral Medium 3.1 (1.84/3) form the strongest tier with fewer catastrophic failures. Segment-level results show sharp category effects: holidays (2.20/3) and cultural concepts (2.19/3) translate substantially better than idioms (1.65/3) and puns (1.45/3), and idioms are most likely to be left untranslated. These findings demonstrate a persistent gap between grammatical adequacy and cultural resonance. To our knowledge, this is the first multilingual, human-annotated benchmark focused explicitly on cultural nuance in translation and localisation, highlighting the need for culturally informed training data, improved cross-lingual pragmatics, and evaluation paradigms that better reflect real-world communicative competence.
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
Cross-lingual evaluation of large language models (LLMs) typically conflates two sources of variance: genuine model performance differences and measurement instability. We investigate evaluation reliability by holding generation conditions constant while varying target language. Using synthetic customer-support dialogues generated with identical parameters across Estonian, Finnish, and Hungarian, we test whether automatic metrics and LLM-as-a-judge scoring produce stable model rankings across these morphologically rich, related Finno-Ugric languages. With a small set of Estonian native speaker annotations as a reference point, we find systematic ranking instabilities: surface-level metrics (lexical diversity, surface and semantic similarity) maintain cross-language stability, but pragmatic judgments (coherence, instruction-following) exhibit rank inversions and near-zero correlations. Because generation is controlled, these inconsistencies reflect how judge scoring behaves differently across languages rather than true model differences. This controlled design provides a diagnostic probe: evaluation methods that fail to maintain stability under identical generation conditions signal transfer failure before deployment. Our findings suggest that zero-shot judge transfer is unreliable for discourse-level assessment in morphologically rich languages, motivating language-specific calibration against targeted human baselines. We release our controlled generation protocol, synthetic data, and evaluation framework to enable replication across language families at https://github.com/isaac-chung/cross-lingual-stability-judges.
Multilingual safety remains significantly imbalanced, leaving non-high-resource (NHR) languages vulnerable compared to robust high-resource (HR) ones. Moreover, the neural mechanisms driving safety alignment remain unclear despite observed cross-lingual representation transfer. In this paper, we find that LLMs contain a set of cross-lingual shared safety neurons (SS-Neurons), a remarkably small yet critical neuronal subset that jointly regulates safety behavior across languages. We first identify monolingual safety neurons (MS-Neurons) and validate their causal role in safety refusal behavior through targeted activation and suppression. Our cross-lingual analyses then identify SS-Neurons as the subset of MS-Neurons shared between HR and NHR languages, serving as a bridge to transfer safety capabilities from HR to NHR domains. We observe that suppressing these neurons causes concurrent safety drops across NHR languages, whereas reinforcing them improves cross-lingual defensive consistency. Building on these insights, we propose a simple neuron-oriented training strategy that targets SS-Neurons based on language resource distribution and model architecture. Experiments demonstrate that fine-tuning this tiny neuronal subset outperforms state-of-the-art methods, significantly enhancing NHR safety while maintaining the model's general capabilities. The code and dataset will be available athttps://github.com/1518630367/SS-Neuron-Expansion.
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.