Abstract:In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
Abstract:We introduce {AraHealthQA 2025}, the {Comprehensive Arabic Health Question Answering Shared Task}, held in conjunction with {ArabicNLP 2025} (co-located with EMNLP 2025). This shared task addresses the paucity of high-quality Arabic medical QA resources by offering two complementary tracks: {MentalQA}, focusing on Arabic mental health Q\&A (e.g., anxiety, depression, stigma reduction), and {MedArabiQ}, covering broader medical domains such as internal medicine, pediatrics, and clinical decision making. Each track comprises multiple subtasks, evaluation datasets, and standardized metrics, facilitating fair benchmarking. The task was structured to promote modeling under realistic, multilingual, and culturally nuanced healthcare contexts. We outline the dataset creation, task design and evaluation framework, participation statistics, baseline systems, and summarize the overall outcomes. We conclude with reflections on the performance trends observed and prospects for future iterations in Arabic health QA.




Abstract:Large Language Models (LLMs) have demonstrated significant promise for various applications in healthcare. However, their efficacy in the Arabic medical domain remains unexplored due to the lack of high-quality domain-specific datasets and benchmarks. This study introduces MedArabiQ, a novel benchmark dataset consisting of seven Arabic medical tasks, covering multiple specialties and including multiple choice questions, fill-in-the-blank, and patient-doctor question answering. We first constructed the dataset using past medical exams and publicly available datasets. We then introduced different modifications to evaluate various LLM capabilities, including bias mitigation. We conducted an extensive evaluation with five state-of-the-art open-source and proprietary LLMs, including GPT-4o, Claude 3.5-Sonnet, and Gemini 1.5. Our findings highlight the need for the creation of new high-quality benchmarks that span different languages to ensure fair deployment and scalability of LLMs in healthcare. By establishing this benchmark and releasing the dataset, we provide a foundation for future research aimed at evaluating and enhancing the multilingual capabilities of LLMs for the equitable use of generative AI in healthcare.