Abstract:Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
Abstract:Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
Abstract:Retrieval Augmented Generation (RAG) is a common method for integrating external knowledge into pretrained Large Language Models (LLMs) to enhance accuracy and relevancy in question answering (QA) tasks. However, prompt engineering and resource efficiency remain significant bottlenecks in developing optimal and robust RAG solutions for real-world QA applications. Recent studies have shown success in using fine tuning to address these problems; in particular, Retrieval Augmented Fine Tuning (RAFT) applied to smaller 7B models has demonstrated superior performance compared to RAG setups with much larger models such as GPT-3.5. The combination of RAFT with parameter-efficient fine tuning (PEFT) techniques, such as Low-Rank Adaptation (LoRA), promises an even more efficient solution, yet remains an unexplored area. In this work, we combine RAFT with LoRA to reduce fine tuning and storage requirements and gain faster inference times while maintaining comparable RAG performance. This results in a more compute-efficient RAFT, or CRAFT, which is particularly useful for knowledge-intensive QA tasks in resource-constrained environments where internet access may be restricted and hardware resources limited.