Topic:Aspect Based Sentiment Analysis
What is Aspect Based Sentiment Analysis? Aspect Based Sentiment Analysis (ABSA) is a Natural Language Processing task that aims to identify and extract the sentiment of specific aspects or components of a product or service. ABSA typically involves a multi-step process that begins with identifying the aspects or features of the product or service that are being discussed in the text. This is followed by sentiment analysis, where the sentiment polarity (positive, negative, or neutral) is assigned to each aspect based on the context of the sentence or document. Finally, the results are aggregated to provide an overall sentiment for each aspect.
Papers and Code
Apr 22, 2025
Abstract:Multimodal aspect-based sentiment classification (MASC) is an emerging task due to an increase in user-generated multimodal content on social platforms, aimed at predicting sentiment polarity toward specific aspect targets (i.e., entities or attributes explicitly mentioned in text-image pairs). Despite extensive efforts and significant achievements in existing MASC, substantial gaps remain in understanding fine-grained visual content and the cognitive rationales derived from semantic content and impressions (cognitive interpretations of emotions evoked by image content). In this study, we present Chimera: a cognitive and aesthetic sentiment causality understanding framework to derive fine-grained holistic features of aspects and infer the fundamental drivers of sentiment expression from both semantic perspectives and affective-cognitive resonance (the synergistic effect between emotional responses and cognitive interpretations). Specifically, this framework first incorporates visual patch features for patch-word alignment. Meanwhile, it extracts coarse-grained visual features (e.g., overall image representation) and fine-grained visual regions (e.g., aspect-related regions) and translates them into corresponding textual descriptions (e.g., facial, aesthetic). Finally, we leverage the sentimental causes and impressions generated by a large language model (LLM) to enhance the model's awareness of sentimental cues evoked by semantic content and affective-cognitive resonance. Experimental results on standard MASC datasets demonstrate the effectiveness of the proposed model, which also exhibits greater flexibility to MASC compared to LLMs such as GPT-4o. We have publicly released the complete implementation and dataset at https://github.com/Xillv/Chimera
* Accepted by TAFFC 2025
Via

Apr 18, 2025
Abstract:Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
* 6 pages, 6 figures, 4 tables
Via

Apr 15, 2025
Abstract:Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+3.1\% F1 and +5.4\% precision on Twitter2015).
* submitted to ACM MM2025
Via

Apr 18, 2025
Abstract:Consumers often heavily rely on online product reviews, analyzing both quantitative ratings and textual descriptions to assess product quality. However, existing research hasn't adequately addressed how to systematically encourage the creation of comprehensive reviews that capture both customers sentiment and detailed product feature analysis. This paper presents CPR, a novel methodology that leverages the power of Large Language Models (LLMs) and Topic Modeling to guide users in crafting insightful and well-rounded reviews. Our approach employs a three-stage process: first, we present users with product-specific terms for rating; second, we generate targeted phrase suggestions based on these ratings; and third, we integrate user-written text through topic modeling, ensuring all key aspects are addressed. We evaluate CPR using text-to-text LLMs, comparing its performance against real-world customer reviews from Walmart. Our results demonstrate that CPR effectively identifies relevant product terms, even for new products lacking prior reviews, and provides sentiment-aligned phrase suggestions, saving users time and enhancing reviews quality. Quantitative analysis reveals a 12.3% improvement in BLEU score over baseline methods, further supported by manual evaluation of generated phrases. We conclude by discussing potential extensions and future research directions.
Via

Mar 26, 2025
Abstract:This study examines the performance of Large Language Models (LLMs) in Aspect-Based Sentiment Analysis (ABSA), with a focus on implicit aspect extraction in a novel domain. Using a synthetic sports feedback dataset, we evaluate open-weight LLMs' ability to extract aspect-polarity pairs and propose a metric to facilitate the evaluation of aspect extraction with generative models. Our findings highlight both the potential and limitations of LLMs in the ABSA task.
* Accepted to NAACL SRW 2025
Via

Mar 17, 2025
Abstract:Aspect-based sentiment analysis seeks to determine sentiment with a high level of detail. While graph convolutional networks (GCNs) are commonly used for extracting sentiment features, their straightforward use in syntactic feature extraction can lead to a loss of crucial information. This paper presents a novel edge-enhanced GCN, called EEGCN, which improves performance by preserving feature integrity as it processes syntactic graphs. We incorporate a bidirectional long short-term memory (Bi-LSTM) network alongside a self-attention-based transformer for effective text encoding, ensuring the retention of long-range dependencies. A bidirectional GCN (Bi-GCN) with message passing then captures the relationships between entities, while an aspect-specific masking technique removes extraneous information. Extensive evaluations and ablation studies on four benchmark datasets show that EEGCN significantly enhances aspect-based sentiment analysis, overcoming issues with syntactic feature extraction and advancing the field's methodologies.
Via

Mar 19, 2025
Abstract:While sentiment analysis has advanced from sentence to aspect-level, i.e., the identification of concrete terms related to a sentiment, the equivalent field of Aspect-based Emotion Analysis (ABEA) is faced with dataset bottlenecks and the increased complexity of emotion classes in contrast to binary sentiments. This paper addresses these gaps, by generating a first ABEA training dataset, consisting of 2,621 English Tweets, and fine-tuning a BERT-based model for the ABEA sub-tasks of Aspect Term Extraction (ATE) and Aspect Emotion Classification (AEC). The dataset annotation process was based on the hierarchical emotion theory by Shaver et al. [1] and made use of group annotation and majority voting strategies to facilitate label consistency. The resulting dataset contained aspect-level emotion labels for Anger, Sadness, Happiness, Fear, and a None class. Using the new ABEA training dataset, the state-of-the-art ABSA model GRACE by Luo et al. [2] was fine-tuned for ABEA. The results reflected a performance plateau at an F1-score of 70.1% for ATE and 46.9% for joint ATE and AEC extraction. The limiting factors for model performance were broadly identified as the small training dataset size coupled with the increased task complexity, causing model overfitting and limited abilities to generalize well on new data.
Via

Mar 26, 2025
Abstract:Investigating the public experience of urgent care facilities is essential for promoting community healthcare development. Traditional survey methods often fall short due to limited scope, time, and spatial coverage. Crowdsourcing through online reviews or social media offers a valuable approach to gaining such insights. With recent advancements in large language models (LLMs), extracting nuanced perceptions from reviews has become feasible. This study collects Google Maps reviews across the DMV and Florida areas and conducts prompt engineering with the GPT model to analyze the aspect-based sentiment of urgent care. We first analyze the geospatial patterns of various aspects, including interpersonal factors, operational efficiency, technical quality, finances, and facilities. Next, we determine Census Block Group(CBG)-level characteristics underpinning differences in public perception, including population density, median income, GINI Index, rent-to-income ratio, household below poverty rate, no insurance rate, and unemployment rate. Our results show that interpersonal factors and operational efficiency emerge as the strongest determinants of patient satisfaction in urgent care, while technical quality, finances, and facilities show no significant independent effects when adjusted for in multivariate models. Among socioeconomic and demographic factors, only population density demonstrates a significant but modest association with patient ratings, while the remaining factors exhibit no significant correlations. Overall, this study highlights the potential of crowdsourcing to uncover the key factors that matter to residents and provide valuable insights for stakeholders to improve public satisfaction with urgent care.
Via

Mar 05, 2025
Abstract:Aspect-based sentiment analysis has gained significant attention in recent years due to its ability to provide fine-grained insights for sentiment expressions related to specific features of entities. An important component of aspect-based sentiment analysis is aspect extraction, which involves identifying and extracting aspect terms from text. Effective aspect extraction serves as the foundation for accurate sentiment analysis at the aspect level. In this paper, we propose aspect extraction models that use different types of embeddings for words and part-of-speech tags and that combine several learning models. We also propose tree positional encoding that is based on dependency parsing output to capture better the aspect positions in sentences. In addition, a new aspect extraction dataset is built for Turkish by machine translating an English dataset in a controlled setting. The experiments conducted on two Turkish datasets showed that the proposed models mostly outperform the studies that use the same datasets, and incorporating tree positional encoding increases the performance of the models.
* Aspect-based Sentiment Analysis, Aspect Extraction, Natural Language
Processing, Machine Learning, Deep Neural Networks, Turkish
Via

Feb 19, 2025
Abstract:Aspect-based sentiment analysis (ABSA) is a sequence labeling task that has garnered growing research interest in multilingual contexts. However, recent studies lack more robust feature alignment and finer aspect-level alignment. In this paper, we propose a novel framework, Multi-Scale and Multi-Objective optimization (MSMO) for cross-lingual ABSA. During multi-scale alignment, we achieve cross-lingual sentence-level and aspect-level alignment, aligning features of aspect terms in different contextual environments. Specifically, we introduce code-switched bilingual sentences into the language discriminator and consistency training modules to enhance the model's robustness. During multi-objective optimization, we design two optimization objectives: supervised training and consistency training, aiming to enhance cross-lingual semantic alignment. To further improve model performance, we incorporate distilled knowledge of the target language into the model. Results show that MSMO significantly enhances cross-lingual ABSA by achieving state-of-the-art performance across multiple languages and models.
Via
