Abstract:Reranking is a critical stage in contemporary information retrieval (IR) systems, improving the relevance of the user-presented final results by honing initial candidate sets. This paper is a thorough guide to examine the changing reranker landscape and offer a clear view of the advancements made in reranking methods. We present a comprehensive survey of reranking models employed in IR, particularly within modern Retrieval Augmented Generation (RAG) pipelines, where retrieved documents notably influence output quality. We embark on a chronological journey through the historical trajectory of reranking techniques, starting with foundational approaches, before exploring the wide range of sophisticated neural network architectures such as cross-encoders, sequence-generation models like T5, and Graph Neural Networks (GNNs) utilized for structural information. Recognizing the computational cost of advancing neural rerankers, we analyze techniques for enhancing efficiency, notably knowledge distillation for creating competitive, lighter alternatives. Furthermore, we map the emerging territory of integrating Large Language Models (LLMs) in reranking, examining novel prompting strategies and fine-tuning tactics. This survey seeks to elucidate the fundamental ideas, relative effectiveness, computational features, and real-world trade-offs of various reranking strategies. The survey provides a structured synthesis of the diverse reranking paradigms, highlighting their underlying principles and comparative strengths and weaknesses.
Abstract:Aspect-Based Sentiment Analysis (ABSA) offers granular insights into opinions but often suffers from the scarcity of diverse, labeled datasets that reflect real-world conversational nuances. This paper presents an approach for generating synthetic ABSA data using Large Language Models (LLMs) to address this gap. We detail the generation process aimed at producing data with consistent topic and sentiment distributions across multiple domains using GPT-4o. The quality and utility of the generated data were evaluated by assessing the performance of three state-of-the-art LLMs (Gemini 1.5 Pro, Claude 3.5 Sonnet, and DeepSeek-R1) on topic and sentiment classification tasks. Our results demonstrate the effectiveness of the synthetic data, revealing distinct performance trade-offs among the models: DeepSeekR1 showed higher precision, Gemini 1.5 Pro and Claude 3.5 Sonnet exhibited strong recall, and Gemini 1.5 Pro offered significantly faster inference. We conclude that LLM-based synthetic data generation is a viable and flexible method for creating valuable ABSA resources, facilitating research and model evaluation without reliance on limited or inaccessible real-world labeled data.