Formalizing surgical activities as triplets of the used instruments, actions performed, and target anatomies is becoming a gold standard approach for surgical activity modeling. The benefit is that this formalization helps to obtain a more detailed understanding of tool-tissue interaction which can be used to develop better Artificial Intelligence assistance for image-guided surgery. Earlier efforts and the CholecTriplet challenge introduced in 2021 have put together techniques aimed at recognizing these triplets from surgical footage. Estimating also the spatial locations of the triplets would offer a more precise intraoperative context-aware decision support for computer-assisted intervention. This paper presents the CholecTriplet2022 challenge, which extends surgical action triplet modeling from recognition to detection. It includes weakly-supervised bounding box localization of every visible surgical instrument (or tool), as the key actors, and the modeling of each tool-activity in the form of <instrument, verb, target> triplet. The paper describes a baseline method and 10 new deep learning algorithms presented at the challenge to solve the task. It also provides thorough methodological comparisons of the methods, an in-depth analysis of the obtained results, their significance, and useful insights for future research directions and applications in surgery.
Cross-domain few-shot relation extraction poses a great challenge for the existing few-shot learning methods and domain adaptation methods when the source domain and target domain have large discrepancies. This paper proposes a method by combining the idea of few-shot learning and domain adaptation to deal with this problem. In the proposed method, an encoder, learned by optimizing a representation loss and an adversarial loss, is used to extract the relation of sentences in the source and target domain. The representation loss, including a cross-entropy loss and a contrastive loss, makes the encoder extract the relation of the source domain and keep the geometric structure of the classes in the source domain. And the adversarial loss is used to merge the source domain and target domain. The experimental results on the benchmark FewRel dataset demonstrate that the proposed method can outperform some state-of-the-art methods.
The decomposition-based multi-objective evolutionary algorithm (MOEA/D) transforms a multi-objective optimization problem (MOP) into a set of single-objective subproblems for collaborative optimization. Mismatches between subproblems and solutions can lead to severe performance degradation of MOEA/D. Most existing mismatch coping strategies only work when the $L_{\infty}$ scalarization is used. A mismatch coping strategy that can use any $L_{p}$ scalarization, even when facing MOPs with non-convex Pareto fronts, is of great significance for MOEA/D. This paper uses the global replacement (GR) as the backbone. We analyze how GR can no longer avoid mismatches when $L_{\infty}$ is replaced by another $L_{p}$ with $p\in [1,\infty)$, and find that the $L_p$-based ($1\leq p<\infty$) subproblems having inconsistently large preference regions. When $p$ is set to a small value, some middle subproblems have very small preference regions so that their direction vectors cannot pass through their corresponding preference regions. Therefore, we propose a generalized $L_p$ (G$L_p$) scalarization to ensure that the subproblem's direction vector passes through its preference region. Our theoretical analysis shows that GR can always avoid mismatches when using the G$L_p$ scalarization for any $p\geq 1$. The experimental studies on various MOPs conform to the theoretical analysis.
Bayesian optimization (BO) is a typical approach to solve expensive optimization problems. In each iteration of BO, a Gaussian process(GP) model is trained using the previously evaluated solutions; then next candidate solutions for expensive evaluation are recommended by maximizing a cheaply-evaluated acquisition function on the trained surrogate model. The acquisition function plays a crucial role in the optimization process. However, each acquisition function has its own strengths and weaknesses, and no single acquisition function can consistently outperform the others on all kinds of problems. To better leverage the advantages of different acquisition functions, we propose a new method for batch BO. In each iteration, three acquisition functions are dynamically selected from a set based on their current and historical performance to form a multi-objective optimization problem (MOP). Using an evolutionary multi-objective algorithm to optimize such a MOP, a set of non-dominated solutions can be obtained. To select batch candidate solutions, we rank these non-dominated solutions into several layers according to their relative performance on the three acquisition functions. The empirical results show that the proposed method is competitive with the state-of-the-art methods on different problems.