Abstract:Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{https://github.com/Namco0816/ProxyQA}.
Abstract:We demonstrate a compact, cost-effective snapshot spectral imaging system named Aperture Diffraction Imaging Spectrometer (ADIS), which consists only of an imaging lens with an ultra-thin orthogonal aperture mask and a mosaic filter sensor, requiring no additional physical footprint compared to common RGB cameras. Then we introduce a new optical design that each point in the object space is multiplexed to discrete encoding locations on the mosaic filter sensor by diffraction-based spatial-spectral projection engineering generated from the orthogonal mask. The orthogonal projection is uniformly accepted to obtain a weakly calibration-dependent data form to enhance modulation robustness. Meanwhile, the Cascade Shift-Shuffle Spectral Transformer (CSST) with strong perception of the diffraction degeneration is designed to solve a sparsity-constrained inverse problem, realizing the volume reconstruction from 2D measurements with Large amount of aliasing. Our system is evaluated by elaborating the imaging optical theory and reconstruction algorithm with demonstrating the experimental imaging under a single exposure. Ultimately, we achieve the sub-super-pixel spatial resolution and high spectral resolution imaging. The code will be available at: https://github.com/Krito-ex/CSST.
Abstract:Ship orientation angle prediction (SOAP) with optical remote sensing images is an important image processing task, which often relies on deep convolutional neural networks (CNNs) to make accurate predictions. This paper proposes a novel framework to reduce the model sizes and computational costs of SOAP models without harming prediction accuracy. First, a new SOAP model called Mobile-SOAP is designed based on MobileNetV2, achieving state-of-the-art prediction accuracy. Four tiny SOAP models are also created by replacing the convolutional blocks in Mobile-SOAP with four small-scale networks, respectively. Then, to transfer knowledge from Mobile-SOAP to four lightweight models, we propose a novel knowledge distillation (KD) framework termed SOAP-KD consisting of a novel feature-based guidance loss and an optimized synthetic samples-based knowledge transfer mechanism. Lastly, extensive experiments on the FGSC-23 dataset confirm the superiority of Mobile-SOAP over existing models and also demonstrate the effectiveness of SOAP-KD in improving the prediction performance of four specially designed tiny models. Notably, by using SOAP-KD, the test mean absolute error of the ShuffleNetV2x1.0-based model is only 8% higher than that of Mobile-SOAP, but its number of parameters and multiply-accumulate operations (MACs) are respectively 61.6% and 60.8% less.
Abstract:Neural network-based speaker recognition has achieved significant improvement in recent years. A robust speaker representation learns meaningful knowledge from both hard and easy samples in the training set to achieve good performance. However, noisy samples (i.e., with wrong labels) in the training set induce confusion and cause the network to learn the incorrect representation. In this paper, we propose a two-step audio-visual deep cleansing framework to eliminate the effect of noisy labels in speaker representation learning. This framework contains a coarse-grained cleansing step to search for the peculiar samples, followed by a fine-grained cleansing step to filter out the noisy labels. Our study starts from an efficient audio-visual speaker recognition system, which achieves a close to perfect equal-error-rate (EER) of 0.01\%, 0.07\% and 0.13\% on the Vox-O, E and H test sets. With the proposed multi-modal cleansing mechanism, four different speaker recognition networks achieve an average improvement of 5.9\%. Code has been made available at: \textcolor{magenta}{\url{https://github.com/TaoRuijie/AVCleanse}}.
Abstract:The success of scene graphs for visual scene understanding has brought attention to the benefits of abstracting a visual input (e.g., image) into a structured representation, where entities (people and objects) are nodes connected by edges specifying their relations. Building these representations, however, requires expensive manual annotation in the form of images paired with their scene graphs or frames. These formalisms remain limited in the nature of entities and relations they can capture. In this paper, we propose to leverage a widely-used meaning representation in the field of natural language processing, the Abstract Meaning Representation (AMR), to address these shortcomings. Compared to scene graphs, which largely emphasize spatial relationships, our visual AMR graphs are more linguistically informed, with a focus on higher-level semantic concepts extrapolated from visual input. Moreover, they allow us to generate meta-AMR graphs to unify information contained in multiple image descriptions under one representation. Through extensive experimentation and analysis, we demonstrate that we can re-purpose an existing text-to-AMR parser to parse images into AMRs. Our findings point to important future research directions for improved scene understanding.
Abstract:We present a novel method for classification of Synthetic Aperture Radar (SAR) data by combining ideas from graph-based learning and neural network methods within an active learning framework. Graph-based methods in machine learning are based on a similarity graph constructed from the data. When the data consists of raw images composed of scenes, extraneous information can make the classification task more difficult. In recent years, neural network methods have been shown to provide a promising framework for extracting patterns from SAR images. These methods, however, require ample training data to avoid overfitting. At the same time, such training data are often unavailable for applications of interest, such as automatic target recognition (ATR) and SAR data. We use a Convolutional Neural Network Variational Autoencoder (CNNVAE) to embed SAR data into a feature space, and then construct a similarity graph from the embedded data and apply graph-based semi-supervised learning techniques. The CNNVAE feature embedding and graph construction requires no labeled data, which reduces overfitting and improves the generalization performance of graph learning at low label rates. Furthermore, the method easily incorporates a human-in-the-loop for active learning in the data-labeling process. We present promising results and compare them to other standard machine learning methods on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset for ATR with small amounts of labeled data.
Abstract:While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been two lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.
Abstract:Conversation disentanglement aims to separate intermingled messages into detached sessions, which is a fundamental task in understanding multi-party conversations. Existing work on conversation disentanglement relies heavily upon human-annotated datasets, which are expensive to obtain in practice. In this work, we explore to train a conversation disentanglement model without referencing any human annotations. Our method is built upon a deep co-training algorithm, which consists of two neural networks: a message-pair classifier and a session classifier. The former is responsible for retrieving local relations between two messages while the latter categorizes a message to a session by capturing context-aware information. Both networks are initialized respectively with pseudo data built from an unannotated corpus. During the deep co-training process, we use the session classifier as a reinforcement learning component to learn a session assigning policy by maximizing the local rewards given by the message-pair classifier. For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence from the disentangled sessions predicted by the session classifier. Experimental results on the large Movie Dialogue Dataset demonstrate that our proposed approach achieves competitive performance compared to the previous supervised methods. Further experiments show that the predicted disentangled conversations can promote the performance on the downstream task of multi-party response selection.
Abstract:The use of deep learning has grown at an exponential rate, giving rise to numerous specialized hardware and software systems for deep learning. Because the design space of deep learning software stacks and hardware accelerators is diverse and vast, prior work considers software optimizations separately from hardware architectures, effectively reducing the search space. Unfortunately, this bifurcated approach means that many profitable design points are never explored. This paper instead casts the problem as hardware/software co-design, with the goal of automatically identifying desirable points in the joint design space. The key to our solution is a new constrained Bayesian optimization framework that avoids invalid solutions by exploiting the highly constrained features of this design space, which are semi-continuous/semi-discrete. We evaluate our optimization framework by applying it to a variety of neural models, improving the energy-delay product by 18% (ResNet) and 40% (DQN) over hand-tuned state-of-the-art systems, as well as demonstrating strong results on other neural network architectures, such as MLPs and Transformers.
Abstract:Image captioning is a multimodal problem that has drawn extensive attention in both the natural language processing and computer vision community. In this paper, we present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation. Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning. The representation is then enhanced with neighbouring and contextual nodes with their textual and visual features. During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences. We perform extensive experiments on the MSCOCO dataset, showing that the proposed framework significantly outperforms the baselines, resulting in the state-of-the-art performance under a wide range of evaluation metrics.