Abstract:Although deep learning-based segmentation models have achieved impressive performance on public benchmarks, generalizing well to unseen environments remains a major challenge. To improve the model's generalization ability to the new domain during evaluation, the test-time training (TTT) is a challenging paradigm that adapts the source-pretrained model in an online fashion. Early efforts on TTT mainly focus on the image classification task. Directly extending these methods to semantic segmentation easily experiences unstable adaption due to segmentation's inherent characteristics, such as extreme class imbalance and complex decision spaces. To stabilize the adaptation process, we introduce contrastive loss (CL), known for its capability to learn robust and generalized representations. Nevertheless, the traditional CL operates in the representation space and cannot directly enhance predictions. In this paper, we resolve this limitation by adapting the CL to the output space, employing a high temperature, and simplifying the formulation, resulting in a straightforward yet effective loss function called Output Contrastive Loss (OCL). Our comprehensive experiments validate the efficacy of our approach across diverse evaluation scenarios. Notably, our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.\footnote{Code and more information could be found at~ \url{https://github.com/dazhangyu123/OCL}}
Abstract:Overfitting remains a significant challenge in the application of Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) analysis. Visualizing heatmaps reveals that current MIL methods focus on a subset of predictive instances, hindering effective model generalization. To tackle this, we propose Attention-Challenging MIL (ACMIL), aimed at forcing the attention mechanism to capture more challenging predictive instances. ACMIL incorporates two techniques, Multiple Branch Attention (MBA) to capture richer predictive instances and Stochastic Top-K Instance Masking (STKIM) to suppress simple predictive instances. Evaluation on three WSI datasets outperforms state-of-the-art methods. Additionally, through heatmap visualization, UMAP visualization, and attention value statistics, this paper comprehensively illustrates ACMIL's effectiveness in overcoming the overfitting challenge. The source code is available at \url{https://github.com/dazhangyu123/ACMIL}.
Abstract:We consider a status information updating system where a fusion center collects the status information from a large number of sources and each of them has its own age of information (AoI) constraints. A novel grouping-based scheduler is proposed to solve this complex large-scale problem by dividing the sources into different scheduling groups. The problem is then transformed into deriving the optimal grouping scheme. A two-step grouping algorithm (TGA) is proposed: 1) Given AoI constraints, we first identify the sources with harmonic AoI constraints, then design a fast grouping method and an optimal scheduler for these sources. Under harmonic AoI constraints, each constraint is divisible by the smallest one and the sum of reciprocals of the constraints with the same value is divisible by the reciprocal of the smallest one. 2) For the other sources without such a special property, we pack the sources which can be scheduled together with minimum update rates into the same group. Simulations show the channel usage of the proposed TGA is significantly reduced as compared to a recent work and is 0.42% larger than a derived lower bound when the number of sources is large.
Abstract:We consider collaborative perception (CP) systems where a fusion center monitors various regions by multiple sources. The center has different age of information (AoI) constraints for different regions. Multi-view sensing data for a region generated by sources can be fused by the center for a reliable representation of the region. To ensure accurate perception, differences between generation time of asynchronous status updates for CP fusion should not exceed a certain threshold. An algorithm named scheduling for CP with asynchronous status updates (SCPA) is proposed to minimize the number of required channels and subject to AoI constraints with asynchronous status updates. SCPA first identifies a set of sources that can satisfy the constraints with minimum updating rates. It then chooses scheduling intervals and offsets for the sources such that the number of required channels is optimized. According to numerical results, the number of channels required by SCPA can reach only 12% more than a derived lower bound.
Abstract:Multimodal information extraction (MIE) aims to extract structured information from unstructured multimedia content. Due to the diversity of tasks and settings, most current MIE models are task-specific and data-intensive, which limits their generalization to real-world scenarios with diverse task requirements and limited labeled data. To address these issues, we propose a novel multimodal question answering (MQA) framework to unify three MIE tasks by reformulating them into a unified span extraction and multi-choice QA pipeline. Extensive experiments on six datasets show that: 1) Our MQA framework consistently and significantly improves the performances of various off-the-shelf large multimodal models (LMM) on MIE tasks, compared to vanilla prompting. 2) In the zero-shot setting, MQA outperforms previous state-of-the-art baselines by a large margin. In addition, the effectiveness of our framework can successfully transfer to the few-shot setting, enhancing LMMs on a scale of 10B parameters to be competitive or outperform much larger language models such as ChatGPT and GPT-4. Our MQA framework can serve as a general principle of utilizing LMMs to better solve MIE and potentially other downstream multimodal tasks.
Abstract:Recent progress in using machine learning models for reasoning tasks has been driven by novel model architectures, large-scale pre-training protocols, and dedicated reasoning datasets for fine-tuning. In this work, to further pursue these advances, we introduce a new data generator for machine reasoning that integrates with an embodied agent. The generated data consists of templated text queries and answers, matched with world-states encoded into a database. The world-states are a result of both world dynamics and the actions of the agent. We show the results of several baseline models on instantiations of train sets. These include pre-trained language models fine-tuned on a text-formatted representation of the database, and graph-structured Transformers operating on a knowledge-graph representation of the database. We find that these models can answer some questions about the world-state, but struggle with others. These results hint at new research directions in designing neural reasoning models and database representations. Code to generate the data will be released at github.com/facebookresearch/neuralmemory
Abstract:Karyotyping is of importance for detecting chromosomal aberrations in human disease. However, chromosomes easily appear curved in microscopic images, which prevents cytogeneticists from analyzing chromosome types. To address this issue, we propose a framework for chromosome straightening, which comprises a preliminary processing algorithm and a generative model called masked conditional variational autoencoders (MC-VAE). The processing method utilizes patch rearrangement to address the difficulty in erasing low degrees of curvature, providing reasonable preliminary results for the MC-VAE. The MC-VAE further straightens the results by leveraging chromosome patches conditioned on their curvatures to learn the mapping between banding patterns and conditions. During model training, we apply a masking strategy with a high masking ratio to train the MC-VAE with eliminated redundancy. This yields a non-trivial reconstruction task, allowing the model to effectively preserve chromosome banding patterns and structure details in the reconstructed results. Extensive experiments on three public datasets with two stain styles show that our framework surpasses the performance of state-of-the-art methods in retaining banding patterns and structure details. Compared to using real-world bent chromosomes, the use of high-quality straightened chromosomes generated by our proposed method can improve the performance of various deep learning models for chromosome classification by a large margin. Such a straightening approach has the potential to be combined with other karyotyping systems to assist cytogeneticists in chromosome analysis.
Abstract:Federated learning enables distributed training of machine learning (ML) models across multiple devices in a privacy-preserving manner. Hierarchical federated learning (HFL) is further proposed to meet the requirements of both latency and coverage. In this paper, we consider a data-heterogeneous HFL scenario with mobility, mainly targeting vehicular networks. We derive the convergence upper bound of HFL with respect to mobility and data heterogeneity, and analyze how mobility impacts the performance of HFL. While mobility is considered as a challenge from a communication point of view, our goal here is to exploit mobility to improve the learning performance by mitigating data heterogeneity. Simulation results verify the analysis and show that mobility can indeed improve the model accuracy by up to 15.1\% when training a convolutional neural network on the CIFAR-10 dataset using HFL.
Abstract:As advances in large language models (LLMs) and multimodal techniques continue to mature, the development of general-purpose multimodal large language models (MLLMs) has surged, with significant applications in natural image interpretation. However, the field of pathology has largely remained untapped in this regard, despite the growing need for accurate, timely, and personalized diagnostics. To bridge the gap in pathology MLLMs, we present the PathAsst in this study, which is a generative foundation AI assistant to revolutionize diagnostic and predictive analytics in pathology. To develop PathAsst, we collect over 142K high-quality pathology image-text pairs from a variety of reliable sources, including PubMed, comprehensive pathology textbooks, reputable pathology websites, and private data annotated by pathologists. Leveraging the advanced capabilities of ChatGPT/GPT-4, we generate over 180K instruction-following samples. Furthermore, we devise additional instruction-following data, specifically tailored for the invocation of the pathology-specific models, allowing the PathAsst to effectively interact with these models based on the input image and user intent, consequently enhancing the model's diagnostic capabilities. Subsequently, our PathAsst is trained based on Vicuna-13B language model in coordination with the CLIP vision encoder. The results of PathAsst show the potential of harnessing the AI-powered generative foundation model to improve pathology diagnosis and treatment processes. We are committed to open-sourcing our meticulously curated dataset, as well as a comprehensive toolkit designed to aid researchers in the extensive collection and preprocessing of their own datasets. Resources can be obtained at https://github.com/superjamessyx/Generative-Foundation-AI-Assistant-for-Pathology.
Abstract:Semantic communication, an intelligent communication paradigm that aims to transmit useful information in the semantic domain, is facilitated by deep learning techniques. Although robust semantic features can be learned and transmitted in an analog fashion, it poses new challenges to hardware, protocol, and encryption. In this paper, we propose a digital semantic communication system, which consists of an encoding network deployed on a resource-limited device and a decoding network deployed at the edge. To acquire better semantic representation for digital transmission, a novel non-linear quantization module is proposed with the trainable quantization levels that efficiently quantifies semantic features. Additionally, structured pruning by a sparse scaling vector is incorporated to reduce the dimension of the transmitted features. We also introduce a semantic learning loss (SLL) function to reduce semantic error. To adapt to various channel conditions and inputs under constraints of communication and computing resources, a policy network is designed to adaptively choose the split point and the dimension of the transmitted semantic features. Experiments using the CIFAR-10 dataset for image classification are employed to evaluate the proposed digital semantic communication network, and ablation studies are conducted to assess the proposed modules including the quantization module, structured pruning and SLL.