Abstract:Dynamic prediction of locomotor capacity after stroke is crucial for tailoring rehabilitation, yet current assessments provide only static impairment scores and do not indicate whether patients can safely perform specific tasks such as slope walking or stair climbing. Here, we develop a data-physics hybrid generative framework that reconstructs an individual stroke survivor's neuromuscular control from a single 20 m level-ground walking trial and predicts task-conditioned locomotion across rehabilitation scenarios. The system combines wearable-sensor kinematics, a proportional-derivative physics controller, a population Healthy Motion Atlas, and goal-conditioned deep reinforcement learning with behaviour cloning and generative adversarial imitation learning to generate physically plausible, patient-specific gait simulations for slopes and stairs. In 11 stroke survivors, the personalized controllers preserved idiosyncratic gait patterns while improving joint-angle and endpoint fidelity by 4.73% and 12.10%, respectively, and reducing training time to 25.56% relative to a physics-only baseline. In a multicentre pilot involving 21 inpatients, clinicians who used our locomotion predictions to guide task selection and difficulty obtained larger gains in Fugl-Meyer lower-extremity scores over 28 days of standard rehabilitation than control clinicians (mean change 6.0 versus 3.7 points). These findings indicate that our generative, task-predictive framework can augment clinical decision-making in post-stroke gait rehabilitation and provide a template for dynamically personalized motor recovery strategies.
Abstract:Modern text-to-speech (TTS) systems, particularly those built on Large Audio-Language Models (LALMs), generate high-fidelity speech that faithfully reproduces input text and mimics specified speaker identities. While prior misuse studies have focused on speaker impersonation, this work explores a distinct content-centric threat: exploiting TTS systems to produce speech containing harmful content. Realizing such threats poses two core challenges: (1) LALM safety alignment frequently rejects harmful prompts, yet existing jailbreak attacks are ill-suited for TTS because these systems are designed to faithfully vocalize any input text, and (2) real-world deployment pipelines often employ input/output filters that block harmful text and audio. We present HARMGEN, a suite of five attacks organized into two families that address these challenges. The first family employs semantic obfuscation techniques (Concat, Shuffle) that conceal harmful content within text. The second leverages audio-modality exploits (Read, Spell, Phoneme) that inject harmful content through auxiliary audio channels while maintaining benign textual prompts. Through evaluation across five commercial LALMs-based TTS systems and three datasets spanning two languages, we demonstrate that our attacks substantially reduce refusal rates and increase the toxicity of generated speech. We further assess both reactive countermeasures deployed by audio-streaming platforms and proactive defenses implemented by TTS providers. Our analysis reveals critical vulnerabilities: deepfake detectors underperform on high-fidelity audio; reactive moderation can be circumvented by adversarial perturbations; while proactive moderation detects 57-93% of attacks. Our work highlights a previously underexplored content-centric misuse vector for TTS and underscore the need for robust cross-modal safeguards throughout training and deployment.
Abstract:Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.




Abstract:Evaluating large language models (LLMs) in medicine is crucial because medical applications require high accuracy with little room for error. Current medical benchmarks have three main types: medical exam-based, comprehensive medical, and specialized assessments. However, these benchmarks have limitations in question design (mostly multiple-choice), data sources (often not derived from real clinical scenarios), and evaluation methods (poor assessment of complex reasoning). To address these issues, we present LLMEval-Med, a new benchmark covering five core medical areas, including 2,996 questions created from real-world electronic health records and expert-designed clinical scenarios. We also design an automated evaluation pipeline, incorporating expert-developed checklists into our LLM-as-Judge framework. Furthermore, our methodology validates machine scoring through human-machine agreement analysis, dynamically refining checklists and prompts based on expert feedback to ensure reliability. We evaluate 13 LLMs across three categories (specialized medical models, open-source models, and closed-source models) on LLMEval-Med, providing valuable insights for the safe and effective deployment of LLMs in medical domains. The dataset is released in https://github.com/llmeval/LLMEval-Med.
Abstract:Harmful fine-tuning attacks pose a major threat to the security of large language models (LLMs), allowing adversaries to compromise safety guardrails with minimal harmful data. While existing defenses attempt to reinforce LLM alignment, they fail to address models' inherent "trainability" on harmful data, leaving them vulnerable to stronger attacks with increased learning rates or larger harmful datasets. To overcome this critical limitation, we introduce SEAM, a novel alignment-enhancing defense that transforms LLMs into self-destructive models with intrinsic resilience to misalignment attempts. Specifically, these models retain their capabilities for legitimate tasks while exhibiting substantial performance degradation when fine-tuned on harmful data. The protection is achieved through a novel loss function that couples the optimization trajectories of benign and harmful data, enhanced with adversarial gradient ascent to amplify the self-destructive effect. To enable practical training, we develop an efficient Hessian-free gradient estimate with theoretical error bounds. Extensive evaluation across LLMs and datasets demonstrates that SEAM creates a no-win situation for adversaries: the self-destructive models achieve state-of-the-art robustness against low-intensity attacks and undergo catastrophic performance collapse under high-intensity attacks, rendering them effectively unusable. (warning: this paper contains potentially harmful content generated by LLMs.)
Abstract:This paper presents AutoRAN, the first automated, weak-to-strong jailbreak attack framework targeting large reasoning models (LRMs). At its core, AutoRAN leverages a weak, less-aligned reasoning model to simulate the target model's high-level reasoning structures, generates narrative prompts, and iteratively refines candidate prompts by incorporating the target model's intermediate reasoning steps. We evaluate AutoRAN against state-of-the-art LRMs including GPT-o3/o4-mini and Gemini-2.5-Flash across multiple benchmark datasets (AdvBench, HarmBench, and StrongReject). Results demonstrate that AutoRAN achieves remarkable success rates (approaching 100%) within one or a few turns across different LRMs, even when judged by a robustly aligned external model. This work reveals that leveraging weak reasoning models can effectively exploit the critical vulnerabilities of much more capable reasoning models, highlighting the need for improved safety measures specifically designed for reasoning-based models. The code for replicating AutoRAN and running records are available at: (https://github.com/JACKPURCELL/AutoRAN-public). (warning: this paper contains potentially harmful content generated by LRMs.)
Abstract:Reinforcement learning (RL) with delays is challenging as sensory perceptions lag behind the actual events: the RL agent needs to estimate the real state of its environment based on past observations. State-of-the-art (SOTA) methods typically employ recursive, step-by-step forecasting of states. This can cause the accumulation of compounding errors. To tackle this problem, our novel belief estimation method, named Directly Forecasting Belief Transformer (DFBT), directly forecasts states from observations without incrementally estimating intermediate states step-by-step. We theoretically demonstrate that DFBT greatly reduces compounding errors of existing recursively forecasting methods, yielding stronger performance guarantees. In experiments with D4RL offline datasets, DFBT reduces compounding errors with remarkable prediction accuracy. DFBT's capability to forecast state sequences also facilitates multi-step bootstrapping, thus greatly improving learning efficiency. On the MuJoCo benchmark, our DFBT-based method substantially outperforms SOTA baselines.




Abstract:Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.




Abstract:Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct Process Flow Dialogue (PFDial) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models' performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.
Abstract:GraphRAG advances retrieval-augmented generation (RAG) by structuring external knowledge as multi-scale knowledge graphs, enabling language models to integrate both broad context and granular details in their reasoning. While GraphRAG has demonstrated success across domains, its security implications remain largely unexplored. To bridge this gap, this work examines GraphRAG's vulnerability to poisoning attacks, uncovering an intriguing security paradox: compared to conventional RAG, GraphRAG's graph-based indexing and retrieval enhance resilience against simple poisoning attacks; meanwhile, the same features also create new attack surfaces. We present GRAGPoison, a novel attack that exploits shared relations in the knowledge graph to craft poisoning text capable of compromising multiple queries simultaneously. GRAGPoison employs three key strategies: i) relation injection to introduce false knowledge, ii) relation enhancement to amplify poisoning influence, and iii) narrative generation to embed malicious content within coherent text. Empirical evaluation across diverse datasets and models shows that GRAGPoison substantially outperforms existing attacks in terms of effectiveness (up to 98% success rate) and scalability (using less than 68% poisoning text). We also explore potential defensive measures and their limitations, identifying promising directions for future research.