Abstract:Eye gaze contains rich information about human attention and cognitive processes. This capability makes the underlying technology, known as gaze tracking, a critical enabler for many ubiquitous applications and has triggered the development of easy-to-use gaze estimation services. Indeed, by utilizing the ubiquitous cameras on tablets and smartphones, users can readily access many gaze estimation services. In using these services, users must provide their full-face images to the gaze estimator, which is often a black box. This poses significant privacy threats to the users, especially when a malicious service provider gathers a large collection of face images to classify sensitive user attributes. In this work, we present PrivateGaze, the first approach that can effectively preserve users' privacy in black-box gaze tracking services without compromising gaze estimation performance. Specifically, we proposed a novel framework to train a privacy preserver that converts full-face images into obfuscated counterparts, which are effective for gaze estimation while containing no privacy information. Evaluation on four datasets shows that the obfuscated image can protect users' private information, such as identity and gender, against unauthorized attribute classification. Meanwhile, when used directly by the black-box gaze estimator as inputs, the obfuscated images lead to comparable tracking performance to the conventional, unprotected full-face images.
Abstract:Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns. Watermarking AI-generated content is a key technology to address these concerns and has been widely deployed in industry. However, watermarking is vulnerable to removal attacks and forgery attacks. In this work, we propose the first image watermarks with certified robustness guarantees against removal and forgery attacks. Our method leverages randomized smoothing, a popular technique to build certifiably robust classifiers and regression models. Our major technical contributions include extending randomized smoothing to watermarking by considering its unique characteristics, deriving the certified robustness guarantees, and designing algorithms to estimate them. Moreover, we extensively evaluate our image watermarks in terms of both certified and empirical robustness. Our code is available at \url{https://github.com/zhengyuan-jiang/Watermark-Library}.
Abstract:Explainable Graph Neural Network (GNN) has emerged recently to foster the trust of using GNNs. Existing GNN explainers are developed from various perspectives to enhance the explanation performance. We take the first step to study GNN explainers under adversarial attack--We found that an adversary slightly perturbing graph structure can ensure GNN model makes correct predictions, but the GNN explainer yields a drastically different explanation on the perturbed graph. Specifically, we first formulate the attack problem under a practical threat model (i.e., the adversary has limited knowledge about the GNN explainer and a restricted perturbation budget). We then design two methods (i.e., one is loss-based and the other is deduction-based) to realize the attack. We evaluate our attacks on various GNN explainers and the results show these explainers are fragile.
Abstract:The robustness of convolutional neural networks (CNNs) is vital to modern AI-driven systems. It can be quantified by formal verification by providing a certified lower bound, within which any perturbation does not alter the original input's classification result. It is challenging due to nonlinear components, such as MaxPool. At present, many verification methods are sound but risk losing some precision to enhance efficiency and scalability, and thus, a certified lower bound is a crucial criterion for evaluating the performance of verification tools. In this paper, we present MaxLin, a robustness verifier for MaxPool-based CNNs with tight linear approximation. By tightening the linear approximation of the MaxPool function, we can certify larger certified lower bounds of CNNs. We evaluate MaxLin with open-sourced benchmarks, including LeNet and networks trained on the MNIST, CIFAR-10, and Tiny ImageNet datasets. The results show that MaxLin outperforms state-of-the-art tools with up to 110.60% improvement regarding the certified lower bound and 5.13 $\times$ speedup for the same neural networks. Our code is available at https://github.com/xiaoyuanpigo/maxlin.
Abstract:In Federated Learning (FL), a set of clients collaboratively train a machine learning model (called global model) without sharing their local training data. The local training data of clients is typically non-i.i.d. and heterogeneous, resulting in varying contributions from individual clients to the final performance of the global model. In response, many contribution evaluation methods were proposed, where the server could evaluate the contribution made by each client and incentivize the high-contributing clients to sustain their long-term participation in FL. Existing studies mainly focus on developing new metrics or algorithms to better measure the contribution of each client. However, the security of contribution evaluation methods of FL operating in adversarial environments is largely unexplored. In this paper, we propose the first model poisoning attack on contribution evaluation methods in FL, termed ACE. Specifically, we show that any malicious client utilizing ACE could manipulate the parameters of its local model such that it is evaluated to have a high contribution by the server, even when its local training data is indeed of low quality. We perform both theoretical analysis and empirical evaluations of ACE. Theoretically, we show our design of ACE can effectively boost the malicious client's perceived contribution when the server employs the widely-used cosine distance metric to measure contribution. Empirically, our results show ACE effectively and efficiently deceive five state-of-the-art contribution evaluation methods. In addition, ACE preserves the accuracy of the final global models on testing inputs. We also explore six countermeasures to defend ACE. Our results show they are inadequate to thwart ACE, highlighting the urgent need for new defenses to safeguard the contribution evaluation methods in FL.
Abstract:Different from a unimodal model whose input is from a single modality, the input (called multi-modal input) of a multi-modal model is from multiple modalities such as image, 3D points, audio, text, etc. Similar to unimodal models, many existing studies show that a multi-modal model is also vulnerable to adversarial perturbation, where an attacker could add small perturbation to all modalities of a multi-modal input such that the multi-modal model makes incorrect predictions for it. Existing certified defenses are mostly designed for unimodal models, which achieve sub-optimal certified robustness guarantees when extended to multi-modal models as shown in our experimental results. In our work, we propose MMCert, the first certified defense against adversarial attacks to a multi-modal model. We derive a lower bound on the performance of our MMCert under arbitrary adversarial attacks with bounded perturbations to both modalities (e.g., in the context of auto-driving, we bound the number of changed pixels in both RGB image and depth image). We evaluate our MMCert using two benchmark datasets: one for the multi-modal road segmentation task and the other for the multi-modal emotion recognition task. Moreover, we compare our MMCert with a state-of-the-art certified defense extended from unimodal models. Our experimental results show that our MMCert outperforms the baseline.
Abstract:As large language models (LLMs) become increasingly integrated into real-world applications such as code generation and chatbot assistance, extensive efforts have been made to align LLM behavior with human values, including safety. Jailbreak attacks, aiming to provoke unintended and unsafe behaviors from LLMs, remain a significant/leading LLM safety threat. In this paper, we aim to defend LLMs against jailbreak attacks by introducing SafeDecoding, a safety-aware decoding strategy for LLMs to generate helpful and harmless responses to user queries. Our insight in developing SafeDecoding is based on the observation that, even though probabilities of tokens representing harmful contents outweigh those representing harmless responses, safety disclaimers still appear among the top tokens after sorting tokens by probability in descending order. This allows us to mitigate jailbreak attacks by identifying safety disclaimers and amplifying their token probabilities, while simultaneously attenuating the probabilities of token sequences that are aligned with the objectives of jailbreak attacks. We perform extensive experiments on five LLMs using six state-of-the-art jailbreak attacks and four benchmark datasets. Our results show that SafeDecoding significantly reduces the attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries. SafeDecoding outperforms six defense methods.
Abstract:Large language models (LLMs) have achieved remarkable success due to their exceptional generative capabilities. Despite their success, they also have inherent limitations such as a lack of up-to-date knowledge and hallucination. Retrieval-Augmented Generation (RAG) is a state-of-the-art technique to mitigate those limitations. In particular, given a question, RAG retrieves relevant knowledge from a knowledge database to augment the input of the LLM. For instance, the retrieved knowledge could be a set of top-k texts that are most semantically similar to the given question when the knowledge database contains millions of texts collected from Wikipedia. As a result, the LLM could utilize the retrieved knowledge as the context to generate an answer for the given question. Existing studies mainly focus on improving the accuracy or efficiency of RAG, leaving its security largely unexplored. We aim to bridge the gap in this work. Particularly, we propose PoisonedRAG , a set of knowledge poisoning attacks to RAG, where an attacker could inject a few poisoned texts into the knowledge database such that the LLM generates an attacker-chosen target answer for an attacker-chosen target question. We formulate knowledge poisoning attacks as an optimization problem, whose solution is a set of poisoned texts. Depending on the background knowledge (e.g., black-box and white-box settings) of an attacker on the RAG, we propose two solutions to solve the optimization problem, respectively. Our results on multiple benchmark datasets and LLMs show our attacks could achieve 90% attack success rates when injecting 5 poisoned texts for each target question into a database with millions of texts. We also evaluate recent defenses and our results show they are insufficient to defend against our attacks, highlighting the need for new defenses.
Abstract:Federated learning (FL) enables multiple participants to train a global machine learning model without sharing their private training data. Peer-to-peer (P2P) FL advances existing centralized FL paradigms by eliminating the server that aggregates local models from participants and then updates the global model. However, P2P FL is vulnerable to (i) honest-but-curious participants whose objective is to infer private training data of other participants, and (ii) Byzantine participants who can transmit arbitrarily manipulated local models to corrupt the learning process. P2P FL schemes that simultaneously guarantee Byzantine resilience and preserve privacy have been less studied. In this paper, we develop Brave, a protocol that ensures Byzantine Resilience And privacy-preserving property for P2P FL in the presence of both types of adversaries. We show that Brave preserves privacy by establishing that any honest-but-curious adversary cannot infer other participants' private data by observing their models. We further prove that Brave is Byzantine-resilient, which guarantees that all benign participants converge to an identical model that deviates from a global model trained without Byzantine adversaries by a bounded distance. We evaluate Brave against three state-of-the-art adversaries on a P2P FL for image classification tasks on benchmark datasets CIFAR10 and MNIST. Our results show that the global model learned with Brave in the presence of adversaries achieves comparable classification accuracy to a global model trained in the absence of any adversary.
Abstract:Backdoor attacks have become a major security threat for deploying machine learning models in security-critical applications. Existing research endeavors have proposed many defenses against backdoor attacks. Despite demonstrating certain empirical defense efficacy, none of these techniques could provide a formal and provable security guarantee against arbitrary attacks. As a result, they can be easily broken by strong adaptive attacks, as shown in our evaluation. In this work, we propose TextGuard, the first provable defense against backdoor attacks on text classification. In particular, TextGuard first divides the (backdoored) training data into sub-training sets, achieved by splitting each training sentence into sub-sentences. This partitioning ensures that a majority of the sub-training sets do not contain the backdoor trigger. Subsequently, a base classifier is trained from each sub-training set, and their ensemble provides the final prediction. We theoretically prove that when the length of the backdoor trigger falls within a certain threshold, TextGuard guarantees that its prediction will remain unaffected by the presence of the triggers in training and testing inputs. In our evaluation, we demonstrate the effectiveness of TextGuard on three benchmark text classification tasks, surpassing the certification accuracy of existing certified defenses against backdoor attacks. Furthermore, we propose additional strategies to enhance the empirical performance of TextGuard. Comparisons with state-of-the-art empirical defenses validate the superiority of TextGuard in countering multiple backdoor attacks. Our code and data are available at https://github.com/AI-secure/TextGuard.