Abstract:Generative transformers have shown their superiority in synthesizing high-fidelity and high-resolution images, such as good diversity and training stability. However, they suffer from the problem of slow generation since they need to generate a long token sequence autoregressively. To better accelerate the generative transformers while keeping good generation quality, we propose Lformer, a semi-autoregressive text-to-image generation model. Lformer firstly encodes an image into $h{\times}h$ discrete tokens, then divides these tokens into $h$ mirrored L-shape blocks from the top left to the bottom right and decodes the tokens in a block parallelly in each step. Lformer predicts the area adjacent to the previous context like autoregressive models thus it is more stable while accelerating. By leveraging the 2D structure of image tokens, Lformer achieves faster speed than the existing transformer-based methods while keeping good generation quality. Moreover, the pretrained Lformer can edit images without the requirement for finetuning. We can roll back to the early steps for regeneration or edit the image with a bounding box and a text prompt.
Abstract:Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence. This task has achieved significant momentum in the computer vision community as it enables activity grounding beyond pre-defined activity classes by utilizing the semantic diversity of natural language descriptions. The semantic diversity is rooted in the principle of compositionality in linguistics, where novel semantics can be systematically described by combining known words in novel ways (compositional generalization). However, existing temporal grounding datasets are not carefully designed to evaluate the compositional generalizability. To systematically benchmark the compositional generalizability of temporal grounding models, we introduce a new Compositional Temporal Grounding task and construct two new dataset splits, i.e., Charades-CG and ActivityNet-CG. When evaluating the state-of-the-art methods on our new dataset splits, we empirically find that they fail to generalize to queries with novel combinations of seen words. We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization. Based on this insight, we propose a variational cross-graph reasoning framework that explicitly decomposes video and language into hierarchical semantic graphs, respectively, and learns fine-grained semantic correspondence between the two graphs. Furthermore, we introduce a novel adaptive structured semantics learning approach to derive the structure-informed and domain-generalizable graph representations, which facilitate the fine-grained semantic correspondence reasoning between the two graphs. Extensive experiments validate the superior compositional generalizability of our approach.
Abstract:OOD-CV challenge is an out-of-distribution generalization task. In this challenge, our core solution can be summarized as that Noisy Label Learning Is A Strong Test-Time Domain Adaptation Optimizer. Briefly speaking, our main pipeline can be divided into two stages, a pre-training stage for domain generalization and a test-time training stage for domain adaptation. We only exploit labeled source data in the pre-training stage and only exploit unlabeled target data in the test-time training stage. In the pre-training stage, we propose a simple yet effective Mask-Level Copy-Paste data augmentation strategy to enhance out-of-distribution generalization ability so as to resist shape, pose, context, texture, occlusion, and weather domain shifts in this challenge. In the test-time training stage, we use the pre-trained model to assign noisy label for the unlabeled target data, and propose a Label-Periodically-Updated DivideMix method for noisy label learning. After integrating Test-Time Augmentation and Model Ensemble strategies, our solution ranks the first place on the Image Classification Leaderboard of the OOD-CV Challenge. Code will be released in https://github.com/hikvision-research/OOD-CV.
Abstract:OOD-CV challenge is an out-of-distribution generalization task. To solve this problem in object detection track, we propose a simple yet effective Generalize-then-Adapt (G&A) framework, which is composed of a two-stage domain generalization part and a one-stage domain adaptation part. The domain generalization part is implemented by a Supervised Model Pretraining stage using source data for model warm-up and a Weakly Semi-Supervised Model Pretraining stage using both source data with box-level label and auxiliary data (ImageNet-1K) with image-level label for performance boosting. The domain adaptation part is implemented as a Source-Free Domain Adaptation paradigm, which only uses the pre-trained model and the unlabeled target data to further optimize in a self-supervised training manner. The proposed G&A framework help us achieve the first place on the object detection leaderboard of the OOD-CV challenge. Code will be released in https://github.com/hikvision-research/OOD-CV.
Abstract:Many studies have been conducted to improve the efficiency of Transformer from quadric to linear. Among them, the low-rank-based methods aim to learn the projection matrices to compress the sequence length. However, the projection matrices are fixed once they have been learned, which compress sequence length with dedicated coefficients for tokens in the same position. Adopting such input-invariant projections ignores the fact that the most informative part of a sequence varies from sequence to sequence, thus failing to preserve the most useful information that lies in varied positions. In addition, previous efficient Transformers only focus on the influence of sequence length while neglecting the effect of hidden state dimension. To address the aforementioned problems, we present an efficient yet effective attention mechanism, namely the Dynamic Bilinear Low-Rank Attention (DBA), which compresses the sequence length by input-sensitive dynamic projection matrices and achieves linear time and space complexity by jointly optimizing the sequence length and hidden state dimension while maintaining state-of-the-art performance. Specifically, we first theoretically demonstrate that the sequence length can be compressed non-destructively from a novel perspective of information theory, with compression matrices dynamically determined by the input sequence. Furthermore, we show that the hidden state dimension can be approximated by extending the Johnson-Lindenstrauss lemma, optimizing the attention in bilinear form. Theoretical analysis shows that DBA is proficient in capturing high-order relations in cross-attention problems. Experiments over tasks with diverse sequence length conditions show that DBA achieves state-of-the-art performance compared with various strong baselines while maintaining less memory consumption with higher speed.
Abstract:Joint entity and relation extraction has been a core task in the field of information extraction. Recent approaches usually consider the extraction of relational triples from a stereoscopic perspective, either learning a relation-specific tagger or separate classifiers for each relation type. However, they still suffer from error propagation, relation redundancy and lack of high-level connections between triples. To address these issues, we propose a novel query-based approach to construct instance-level representations for relational triples. By metric-based comparison between query embeddings and token embeddings, we can extract all types of triples in one step, thus eliminating the error propagation problem. In addition, we learn the instance-level representation of relational triples via contrastive learning. In this way, relational triples can not only enclose rich class-level semantics but also access to high-order global connections. Experimental results show that our proposed method achieves the state of the art on five widely used benchmarks.
Abstract:Predicting the impact of publications in science and technology has become an important research area, which is useful in various real world scenarios such as technology investment, research direction selection, and technology policymaking. Citation trajectory prediction is one of the most popular tasks in this area. Existing approaches mainly rely on mining temporal and graph data from academic articles. Some recent methods are capable of handling cold-start prediction by aggregating metadata features of new publications. However, the implicit factors causing citations and the richer information from handling temporal and attribute features still need to be explored. In this paper, we propose CTPIR, a new citation trajectory prediction framework that is able to represent the influence (the momentum of citation) of either new or existing publications using the history information of all their attributes. Our framework is composed of three modules: difference-preserved graph embedding, fine-grained influence representation, and learning-based trajectory calculation. To test the effectiveness of our framework in more situations, we collect and construct a new temporal knowledge graph dataset from the real world, named AIPatent, which stems from global patents in the field of artificial intelligence. Experiments are conducted on both the APS academic dataset and our contributed AIPatent dataset. The results demonstrate the strengths of our approach in the citation trajectory prediction task.
Abstract:Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks. Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts, or advanced cross-modal attention upon image and text features. However, they fail to explicitly learn the fine-grained semantic alignment between visual regions and textual phrases, as only global image-text alignment information is available. In this paper, we introduce LOUPE, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions. To efficiently compute the game-theoretic interactions, we further propose an uncertainty-aware neural Shapley interaction learning module. Experiments show that LOUPE achieves state-of-the-art on image-text retrieval benchmarks. Without any object-level human annotations and fine-tuning, LOUPE achieves competitive performance on object detection and visual grounding. More importantly, LOUPE opens a new promising direction of learning fine-grained semantics from large-scale raw image-text pairs.
Abstract:Understanding human emotions is a crucial ability for intelligent robots to provide better human-robot interactions. The existing works are limited to trimmed video-level emotion classification, failing to locate the temporal window corresponding to the emotion. In this paper, we introduce a new task, named Temporal Emotion Localization in videos~(TEL), which aims to detect human emotions and localize their corresponding temporal boundaries in untrimmed videos with aligned subtitles. TEL presents three unique challenges compared to temporal action localization: 1) The emotions have extremely varied temporal dynamics; 2) The emotion cues are embedded in both appearances and complex plots; 3) The fine-grained temporal annotations are complicated and labor-intensive. To address the first two challenges, we propose a novel dilated context integrated network with a coarse-fine two-stream architecture. The coarse stream captures varied temporal dynamics by modeling multi-granularity temporal contexts. The fine stream achieves complex plots understanding by reasoning the dependency between the multi-granularity temporal contexts from the coarse stream and adaptively integrates them into fine-grained video segment features. To address the third challenge, we introduce a cross-modal consensus learning paradigm, which leverages the inherent semantic consensus between the aligned video and subtitle to achieve weakly-supervised learning. We contribute a new testing set with 3,000 manually-annotated temporal boundaries so that future research on the TEL problem can be quantitatively evaluated. Extensive experiments show the effectiveness of our approach on temporal emotion localization. The repository of this work is at https://github.com/YYJMJC/Temporal-Emotion-Localization-in-Videos.
Abstract:Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text, which potentially impacts a wide variety of real-world applications, such as internet search and fashion retrieval. In this scenario, the input image serves as an intuitive context and background for the search, while the corresponding language expressly requests new traits on how specific characteristics of the query image should be modified in order to get the intended target image. This task is challenging since it necessitates learning and understanding the composite image-text representation by incorporating cross-granular semantic updates. In this paper, we tackle this task by a novel \underline{\textbf{B}}ottom-up cr\underline{\textbf{O}}ss-modal \underline{\textbf{S}}emantic compo\underline{\textbf{S}}ition (\textbf{BOSS}) with Hybrid Counterfactual Training framework, which sheds new light on the CIR task by studying it from two previously overlooked perspectives: \emph{implicitly bottom-up composition of visiolinguistic representation} and \emph{explicitly fine-grained correspondence of query-target construction}. On the one hand, we leverage the implicit interaction and composition of cross-modal embeddings from the bottom local characteristics to the top global semantics, preserving and transforming the visual representation conditioned on language semantics in several continuous steps for effective target image search. On the other hand, we devise a hybrid counterfactual training strategy that can reduce the model's ambiguity for similar queries.