Odometer has been proven to significantly improve the accuracy of the Global Navigation Satellite System / Inertial Navigation System (GNSS/INS) integrated vehicle navigation in GNSS-challenged environments. However, the odometer is inaccessible in many applications, especially for aftermarket devices. To apply forward speed aiding without hardware wheeled odometer, we propose OdoNet, an untethered one-dimensional Convolution Neural Network (CNN)-based pseudo-odometer model learning from a single Inertial Measurement Unit (IMU), which can act as an alternative to the wheeled odometer. Dedicated experiments have been conducted to verify the feasibility and robustness of the OdoNet. The results indicate that the IMU individuality, the vehicle loads, and the road conditions have little impact on the robustness and precision of the OdoNet, while the IMU biases and the mounting angles may notably ruin the OdoNet. Thus, a data-cleaning procedure is added to effectively mitigate the impacts of the IMU biases and the mounting angles. Compared to the process using only non-holonomic constraint (NHC), after employing the pseudo-odometer, the positioning error is reduced by around 68%, while the percentage is around 74% for the hardware wheeled odometer. In conclusion, the proposed OdoNet can be employed as an untethered pseudo-odometer for vehicle navigation, which can efficiently improve the accuracy and reliability of the positioning in GNSS-denied environments.
LIDAR sensors are usually used to provide autonomous vehicles with 3D representations of their environment. In ideal conditions, geometrical models could detect the road in LIDAR scans, at the cost of a manual tuning of numerical constraints, and a lack of flexibility. We instead propose an evidential pipeline, to accumulate road detection results obtained from neural networks. First, we introduce RoadSeg, a new convolutional architecture that is optimized for road detection in LIDAR scans. RoadSeg is used to classify individual LIDAR points as either belonging to the road, or not. Yet, such point-level classification results need to be converted into a dense representation, that can be used by an autonomous vehicle. We thus secondly present an evidential road mapping algorithm, that fuses consecutive road detection results. We benefitted from a reinterpretation of logistic classifiers, which can be seen as generating a collection of simple evidential mass functions. An evidential grid map that depicts the road can then be obtained, by projecting the classification results from RoadSeg into grid cells, and by handling moving objects via conflict analysis. The system was trained and evaluated on real-life data. A python implementation maintains a 10 Hz framerate. Since road labels were needed for training, a soft labelling procedure, relying lane-level HD maps, was used to generate coarse training and validation sets. An additional test set was manually labelled for evaluation purposes. So as to reach satisfactory results, the system fuses road detection results obtained from three variants of RoadSeg, processing different LIDAR features.
Low-dimension graph embeddings have proved extremely useful in various downstream tasks in large graphs, e.g., link-related content recommendation and node classification tasks, etc. Most existing embedding approaches take nodes as the basic unit for information aggregation, e.g., node perception fields in GNN or con-textual nodes in random walks. The main drawback raised by such node-view is its lack of support for expressing the compound relationships between nodes, which results in the loss of a certain degree of graph information during embedding. To this end, this paper pro-poses PairE(Pair Embedding), a solution to use "pair", a higher level unit than a "node" as the core for graph embeddings. Accordingly, a multi-self-supervised auto-encoder is designed to fulfill two pretext tasks, to reconstruct the feature distribution for respective pairs and their surrounding context. PairE has three major advantages: 1) Informative, embedding beyond node-view are capable to preserve richer information of the graph; 2) Simple, the solutions provided by PairE are time-saving, storage-efficient, and require the fewer hyper-parameters; 3) High adaptability, with the introduced translator operator to map pair embeddings to the node embeddings, PairE can be effectively used in both the link-based and the node-based graph analysis. Experiment results show that PairE consistently outperforms the state of baselines in all four downstream tasks, especially with significant edges in the link-prediction and multi-label node classification tasks.
Supervised learning on Deep Neural Networks (DNNs) is data hungry. Optimizing performance of DNN in the presence of noisy labels has become of paramount importance since collecting a large dataset will usually bring in noisy labels. Inspired by the robustness of K-Nearest Neighbors (KNN) against data noise, in this work, we propose to apply deep KNN for label cleanup. Our approach leverages DNNs for feature extraction and KNN for ground-truth label inference. We iteratively train the neural network and update labels to simultaneously proceed towards higher label recovery rate and better classification performance. Experiment results show that under the same setting, our approach outperforms existing label correction methods and achieves better accuracy on multiple datasets, e.g.,76.78% on Clothing1M dataset.
LiDARs are usually more accurate than cameras in distance measuring. Hence, there is strong interest to apply LiDARs in autonomous driving. Different existing approaches process the rich 3D point clouds for object detection, tracking and recognition. These methods generally require two initial steps: (1) filter points on the ground plane and (2) cluster non-ground points into objects. This paper proposes a field-tested fast 3D point cloud segmentation method for these two steps. Our specially designed algorithms allow instantly process raw LiDAR data packets, which significantly reduce the processing delay. In our tests on Velodyne UltraPuck, a 32 layers spinning LiDAR, the processing delay of clustering all the $360^\circ$ LiDAR measures is less than 1ms. Meanwhile, a coarse-to-fine scheme is applied to ensure the clustering quality. Our field experiments in public roads have shown that the proposed method significantly improves the speed of 3D point cloud clustering whilst maintains good accuracy.
Camera-based end-to-end driving neural networks bring the promise of a low-cost system that maps camera images to driving control commands. These networks are appealing because they replace laborious hand engineered building blocks but their black-box nature makes them difficult to delve in case of failure. Recent works have shown the importance of using an explicit intermediate representation that has the benefits of increasing both the interpretability and the accuracy of networks' decisions. Nonetheless, these camera-based networks reason in camera view where scale is not homogeneous and hence not directly suitable for motion forecasting. In this paper, we introduce a novel monocular camera-only holistic end-to-end trajectory planning network with a Bird-Eye-View (BEV) intermediate representation that comes in the form of binary Occupancy Grid Maps (OGMs). To ease the prediction of OGMs in BEV from camera images, we introduce a novel scheme where the OGMs are first predicted as semantic masks in camera view and then warped in BEV using the homography between the two planes. The key element allowing this transformation to be applied to 3D objects such as vehicles, consists in predicting solely their footprint in camera-view, hence respecting the flat world hypothesis implied by the homography.
The inertial navigation system (INS) has been widely used to provide self-contained and continuous motion estimation in intelligent transportation systems. Recently, the emergence of chip-level inertial sensors has expanded the relevant applications from positioning, navigation, and mobile mapping to location-based services, unmanned systems, and transportation big data. Meanwhile, benefit from the emergence of big data and the improvement of algorithms and computing power, artificial intelligence (AI) has become a consensus tool that has been successfully applied in various fields. This article reviews the research on using AI technology to enhance inertial sensing from various aspects, including sensor design and selection, calibration and error modeling, navigation and motion-sensing algorithms, multi-sensor information fusion, system evaluation, and practical application. Based on the over 30 representative articles selected from the nearly 300 related publications, this article summarizes the state of the art, advantages, and challenges on each aspect. Finally, it summarizes nine advantages and nine challenges of AI-enhanced inertial sensing and then points out future research directions.
Autonomous vehicles rely on their perception systems to acquire information about their immediate surroundings. It is necessary to detect the presence of other vehicles, pedestrians and other relevant entities. Safety concerns and the need for accurate estimations have led to the introduction of Light Detection and Ranging (LiDAR) systems in complement to the camera or radar-based perception systems. This article presents a review of state-of-the-art automotive LiDAR technologies and the perception algorithms used with those technologies. LiDAR systems are introduced first by analyzing the main components, from laser transmitter to its beam scanning mechanism. Advantages/disadvantages and the current status of various solutions are introduced and compared. Then, the specific perception pipeline for LiDAR data processing, from an autonomous vehicle perspective is detailed. The model-driven approaches and the emerging deep learning solutions are reviewed. Finally, we provide an overview of the limitations, challenges and trends for automotive LiDARs and perception systems.
Location is key to spatialize internet-of-things (IoT) data. However, it is challenging to use low-cost IoT devices for robust unsupervised localization (i.e., localization without training data that have known location labels). Thus, this paper proposes a deep reinforcement learning (DRL) based unsupervised wireless-localization method. The main contributions are as follows. (1) This paper proposes an approach to model a continuous wireless-localization process as a Markov decision process (MDP) and process it within a DRL framework. (2) To alleviate the challenge of obtaining rewards when using unlabeled data (e.g., daily-life crowdsourced data), this paper presents a reward-setting mechanism, which extracts robust landmark data from unlabeled wireless received signal strengths (RSS). (3) To ease requirements for model re-training when using DRL for localization, this paper uses RSS measurements together with agent location to construct DRL inputs. The proposed method was tested by using field testing data from multiple Bluetooth 5 smart ear tags in a pasture. Meanwhile, the experimental verification process reflected the advantages and challenges for using DRL in wireless localization.
This article focuses on analyzing the performance of a typical time-of-flight (ToF) LiDAR under fog environment. By controlling the fog density within CEREMA Adverse Weather Facility 1 , the relations between the ranging performance and fogs are both qualitatively and quantitatively investigated. Furthermore, based on the collected data, a machine learning based model is trained to predict the minimum fog visibility that allows successful ranging for this type of LiDAR. The revealed experimental results and methods are helpful for ToF LiDAR specifications from automotive industry.