Abstract:The rapid evolution of text-to-image generation models has revolutionized visual content creation. While commercial products like Nano Banana Pro have garnered significant attention, their potential as generalist solvers for traditional low-level vision challenges remains largely underexplored. In this study, we investigate the critical question: Is Nano Banana Pro a Low-Level Vision All-Rounder? We conducted a comprehensive zero-shot evaluation across 14 distinct low-level tasks spanning 40 diverse datasets. By utilizing simple textual prompts without fine-tuning, we benchmarked Nano Banana Pro against state-of-the-art specialist models. Our extensive analysis reveals a distinct performance dichotomy: while \textbf{Nano Banana Pro demonstrates superior subjective visual quality}, often hallucinating plausible high-frequency details that surpass specialist models, it lags behind in traditional reference-based quantitative metrics. We attribute this discrepancy to the inherent stochasticity of generative models, which struggle to maintain the strict pixel-level consistency required by conventional metrics. This report identifies Nano Banana Pro as a capable zero-shot contender for low-level vision tasks, while highlighting that achieving the high fidelity of domain specialists remains a significant hurdle.
Abstract:Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capability for embodied intelligent agents to perceive and comprehend their operational environments. Recent advancements employ predefined object queries to aggregate semantic information from Vision Foundation Models (VFMs) outputs that are lifted into 3D point clouds, facilitating spatial information propagation through inter-query interactions. Nevertheless, perception is an inherently dynamic process, rendering temporal understanding a critical yet overlooked dimension within these prevailing query-based pipelines. Therefore, to further unlock the temporal environmental perception capabilities of embodied agents, our work reconceptualizes online 3D segmentation as an instance tracking problem (AutoSeg3D). Our core strategy involves utilizing object queries for temporal information propagation, where long-term instance association promotes the coherence of features and object identities, while short-term instance update enriches instant observations. Given that viewpoint variations in embodied robotics often lead to partial object visibility across frames, this mechanism aids the model in developing a holistic object understanding beyond incomplete instantaneous views. Furthermore, we introduce spatial consistency learning to mitigate the fragmentation problem inherent in VFMs, yielding more comprehensive instance information for enhancing the efficacy of both long-term and short-term temporal learning. The temporal information exchange and consistency learning facilitated by these sparse object queries not only enhance spatial comprehension but also circumvent the computational burden associated with dense temporal point cloud interactions. Our method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on ScanNet200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets.




Abstract:Recent studies have shown that agent-based systems leveraging large language models (LLMs) for key information retrieval and integration have emerged as a promising approach for long video understanding. However, these systems face two major challenges. First, they typically perform modeling and reasoning on individual frames, struggling to capture the temporal context of consecutive frames. Second, to reduce the cost of dense frame-level captioning, they adopt sparse frame sampling, which risks discarding crucial information. To overcome these limitations, we propose VideoLucy, a deep memory backtracking framework for long video understanding. Inspired by the human recollection process from coarse to fine, VideoLucy employs a hierarchical memory structure with progressive granularity. This structure explicitly defines the detail level and temporal scope of memory at different hierarchical depths. Through an agent-based iterative backtracking mechanism, VideoLucy systematically mines video-wide, question-relevant deep memories until sufficient information is gathered to provide a confident answer. This design enables effective temporal understanding of consecutive frames while preserving critical details. In addition, we introduce EgoMem, a new benchmark for long video understanding. EgoMem is designed to comprehensively evaluate a model's ability to understand complex events that unfold over time and capture fine-grained details in extremely long videos. Extensive experiments demonstrate the superiority of VideoLucy. Built on open-source models, VideoLucy significantly outperforms state-of-the-art methods on multiple long video understanding benchmarks, achieving performance even surpassing the latest proprietary models such as GPT-4o. Our code and dataset will be made publicly at https://videolucy.github.io
Abstract:Previous studies on event camera sensing have demonstrated certain detection performance using dense event representations. However, the accumulated noise in such dense representations has received insufficient attention, which degrades the representation quality and increases the likelihood of missed detections. To address this challenge, we propose the Wavelet Denoising-enhanced DEtection TRansformer, i.e., WD-DETR network, for event cameras. In particular, a dense event representation is presented first, which enables real-time reconstruction of events as tensors. Then, a wavelet transform method is designed to filter noise in the event representations. Such a method is integrated into the backbone for feature extraction. The extracted features are subsequently fed into a transformer-based network for object prediction. To further reduce inference time, we incorporate the Dynamic Reorganization Convolution Block (DRCB) as a fusion module within the hybrid encoder. The proposed method has been evaluated on three event-based object detection datasets, i.e., DSEC, Gen1, and 1Mpx. The results demonstrate that WD-DETR outperforms tested state-of-the-art methods. Additionally, we implement our approach on a common onboard computer for robots, the NVIDIA Jetson Orin NX, achieving a high frame rate of approximately 35 FPS using TensorRT FP16, which is exceptionally well-suited for real-time perception of onboard robotic systems.
Abstract:The growing burden of myopia and retinal diseases necessitates more accessible and efficient eye screening solutions. This study presents a compact, dual-function optical device that integrates fundus photography and refractive error detection into a unified platform. The system features a coaxial optical design using dichroic mirrors to separate wavelength-dependent imaging paths, enabling simultaneous alignment of fundus and refraction modules. A Dense-U-Net-based algorithm with customized loss functions is employed for accurate pupil segmentation, facilitating automated alignment and focusing. Experimental evaluations demonstrate the system's capability to achieve high-precision pupil localization (EDE = 2.8 px, mIoU = 0.931) and reliable refractive estimation with a mean absolute error below 5%. Despite limitations due to commercial lens components, the proposed framework offers a promising solution for rapid, intelligent, and scalable ophthalmic screening, particularly suitable for community health settings.
Abstract:This study proposes a method for imbalanced data classification based on deep probabilistic graphical models (DPGMs) to solve the problem that traditional methods have insufficient learning ability for minority class samples. To address the classification bias caused by class imbalance, we introduce variational inference optimization probability modeling, which enables the model to adaptively adjust the representation ability of minority classes and combines the class-aware weight adjustment strategy to enhance the classifier's sensitivity to minority classes. In addition, we combine the adversarial learning mechanism to generate minority class samples in the latent space so that the model can better characterize the category boundary in the high-dimensional feature space. The experiment is evaluated on the Kaggle "Credit Card Fraud Detection" dataset and compared with a variety of advanced imbalanced classification methods (such as GAN-based sampling, BRF, XGBoost-Cost Sensitive, SAAD, HAN). The results show that the method in this study has achieved the best performance in AUC, Precision, Recall and F1-score indicators, effectively improving the recognition rate of minority classes and reducing the false alarm rate. This method can be widely used in imbalanced classification tasks such as financial fraud detection, medical diagnosis, and anomaly detection, providing a new solution for related research.
Abstract:This paper proposes a data privacy protection framework based on federated learning, which aims to realize effective cross-domain data collaboration under the premise of ensuring data privacy through distributed learning. Federated learning greatly reduces the risk of privacy breaches by training the model locally on each client and sharing only model parameters rather than raw data. The experiment verifies the high efficiency and privacy protection ability of federated learning under different data sources through the simulation of medical, financial, and user data. The results show that federated learning can not only maintain high model performance in a multi-domain data environment but also ensure effective protection of data privacy. The research in this paper provides a new technical path for cross-domain data collaboration and promotes the application of large-scale data analysis and machine learning while protecting privacy.




Abstract:This paper proposes an algorithm based on a staged sliding window Transformer architecture to detect abnormal behaviors in the microstructure of the foreign exchange market, focusing on high-frequency EUR/USD trading data. The method captures multi-scale temporal features through a staged sliding window, extracts global and local dependencies by combining the self-attention mechanism and weighted attention mechanism of the Transformer, and uses a classifier to identify abnormal events. Experimental results on a real high-frequency dataset containing order book depth, spread, and trading volume show that the proposed method significantly outperforms traditional machine learning (such as decision trees and random forests) and deep learning methods (such as MLP, CNN, RNN, LSTM) in terms of accuracy (0.93), F1-Score (0.91), and AUC-ROC (0.95). Ablation experiments verify the contribution of each component, and the visualization of order book depth and anomaly detection further reveals the effectiveness of the model under complex market dynamics. Despite the false positive problem, the model still provides important support for market supervision. In the future, noise processing can be optimized and extended to other markets to improve generalization and real-time performance.




Abstract:This study proposes a risk pricing anomaly detection method for social network user portraits based on graph neural networks (GNNs), aiming to improve the ability to identify abnormal users in social network environments. In view of the limitations of traditional methods in social network data modeling, this paper combines graph autoencoders (GAEs) and graph attention networks (GATs) to achieve accurate detection of abnormal users through dynamic aggregation of neighbor features and reconstruction error evaluation. The Facebook Page-Page Network dataset is used in the experiment and compared with VAE, GNN, Transformer and GAE. The results show that the proposed method achieves the best performance in AUC, F1-score, Precision and Recall, verifying its effectiveness. In addition, this paper explores the computational efficiency of the model in large-scale data and looks forward to combining self-supervised learning, federated learning, and other technologies in the future to improve the robustness and privacy protection of risk assessment. The research results can provide efficient anomaly detection solutions for financial risk control, social security management, and other fields.
Abstract:This study proposes a dynamic rule data mining algorithm based on an improved Transformer architecture, aiming to improve the accuracy and efficiency of rule mining in a dynamic data environment. With the increase in data volume and complexity, traditional data mining methods are difficult to cope with dynamic data with strong temporal and variable characteristics, so new algorithms are needed to capture the temporal regularity in the data. By improving the Transformer architecture, and introducing a dynamic weight adjustment mechanism and a temporal dependency module, we enable the model to adapt to data changes and mine more accurate rules. Experimental results show that compared with traditional rule mining algorithms, the improved Transformer model has achieved significant improvements in rule mining accuracy, coverage, and stability. The contribution of each module in the algorithm performance is further verified by ablation experiments, proving the importance of temporal dependency and dynamic weight adjustment mechanisms in improving the model effect. In addition, although the improved model has certain challenges in computational efficiency, its advantages in accuracy and coverage enable it to perform well in processing complex dynamic data. Future research will focus on optimizing computational efficiency and combining more deep learning technologies to expand the application scope of the algorithm, especially in practical applications in the fields of finance, medical care, and intelligent recommendation.