Abstract:Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, trained end-to-end with policy gradient methods, achieving strong performance. However, this comes at the cost of requiring many diffusion steps, which significantly hampers training efficiency, while directly reducing the steps leads to noticeable performance degradation. Critically, the lack of inference efficiency becomes a significant bottleneck for applying diffusion policies in real-time online RL settings. To improve training and inference efficiency while maintaining or even enhancing performance, we propose a Q-gradient field objective as an auxiliary optimization target to guide the denoising process at each diffusion step. Nonetheless, we observe that the independence of the Q-gradient field from the diffusion time step negatively impacts the performance of the diffusion policy. To address this, we introduce a temporal weighting mechanism that enables the model to efficiently eliminate large-scale noise in the early stages and refine actions in the later stages. Experimental results on MuJoCo benchmarks and several multimodal tasks demonstrate that the DACER2 algorithm achieves state-of-the-art performance in most MuJoCo control tasks with only five diffusion steps, while also exhibiting stronger multimodality compared to DACER.
Abstract:Multimodal learning has driven innovation across various industries, particularly in the field of music. By enabling more intuitive interaction experiences and enhancing immersion, it not only lowers the entry barriers to the music but also increases its overall appeal. This survey aims to provide a comprehensive review of multimodal tasks related to music, outlining how music contributes to multimodal learning and offering insights for researchers seeking to expand the boundaries of computational music. Unlike text and images, which are often semantically or visually intuitive, music primarily interacts with humans through auditory perception, making its data representation inherently less intuitive. Therefore, this paper first introduces the representations of music and provides an overview of music datasets. Subsequently, we categorize cross-modal interactions between music and multimodal data into three types: music-driven cross-modal interactions, music-oriented cross-modal interactions, and bidirectional music cross-modal interactions. For each category, we systematically trace the development of relevant sub-tasks, analyze existing limitations, and discuss emerging trends. Furthermore, we provide a comprehensive summary of datasets and evaluation metrics used in multimodal tasks related to music, offering benchmark references for future research. Finally, we discuss the current challenges in cross-modal interactions involving music and propose potential directions for future research.
Abstract:Robotic agents must master common sense and long-term sequential decisions to solve daily tasks through natural language instruction. The developments in Large Language Models (LLMs) in natural language processing have inspired efforts to use LLMs in complex robot planning. Despite LLMs' great generalization and comprehension of instruction tasks, LLMs-generated task plans sometimes lack feasibility and correctness. To address the problem, we propose a RoboGPT agent\footnote{our code and dataset will be released soon} for making embodied long-term decisions for daily tasks, with two modules: 1) LLMs-based planning with re-plan to break the task into multiple sub-goals; 2) RoboSkill individually designed for sub-goals to learn better navigation and manipulation skills. The LLMs-based planning is enhanced with a new robotic dataset and re-plan, called RoboGPT. The new robotic dataset of 67k daily instruction tasks is gathered for fine-tuning the Llama model and obtaining RoboGPT. RoboGPT planner with strong generalization can plan hundreds of daily instruction tasks. Additionally, a low-computational Re-Plan module is designed to allow plans to flexibly adapt to the environment, thereby addressing the nomenclature diversity challenge. The proposed RoboGPT agent outperforms SOTA methods on the ALFRED daily tasks. Moreover, RoboGPT planner exceeds SOTA LLM-based planners like ChatGPT in task-planning rationality for hundreds of unseen daily tasks, and even other domain tasks, while keeping the large model's original broad application and generality.