Abstract:Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
Abstract:Multimodal in-context learning (ICL) enables large vision-language models (LVLMs) to efficiently adapt to novel tasks, supporting a wide array of real-world applications. However, multimodal ICL remains unstable, and current research largely focuses on optimizing sequence configuration while overlooking the internal mechanisms of LVLMs. In this work, we first provide a theoretical analysis of attentional dynamics in multimodal ICL and identify three core limitations of standard attention that ICL impair performance. To address these challenges, we propose Context-Aware Modulated Attention (CAMA), a simple yet effective plug-and-play method for directly calibrating LVLM attention logits. CAMA is training-free and can be seamlessly applied to various open-source LVLMs. We evaluate CAMA on four LVLMs across six benchmarks, demonstrating its effectiveness and generality. CAMA opens new opportunities for deeper exploration and targeted utilization of LVLM attention dynamics to advance multimodal reasoning.
Abstract:Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input in-context sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures in-context sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a valuable perspective for interpreting and improving multimodal ICL.
Abstract:Scientific diagrams are vital tools for communicating structured knowledge across disciplines. However, they are often published as static raster images, losing symbolic semantics and limiting reuse. While Multimodal Large Language Models (MLLMs) offer a pathway to bridging vision and structure, existing methods lack semantic control and structural interpretability, especially on complex diagrams. We propose Draw with Thought (DwT), a training-free framework that guides MLLMs to reconstruct diagrams into editable mxGraph XML code through cognitively-grounded Chain-of-Thought reasoning. DwT enables interpretable and controllable outputs without model fine-tuning by dividing the task into two stages: Coarse-to-Fine Planning, which handles perceptual structuring and semantic specification, and Structure-Aware Code Generation, enhanced by format-guided refinement. To support evaluation, we release Plot2XML, a benchmark of 247 real-world scientific diagrams with gold-standard XML annotations. Extensive experiments across eight MLLMs show that our approach yields high-fidelity, semantically aligned, and structurally valid reconstructions, with human evaluations confirming strong alignment in both accuracy and visual aesthetics, offering a scalable solution for converting static visuals into executable representations and advancing machine understanding of scientific graphics.
Abstract:Multimodal in-context learning (ICL) is a vital capability for Large Vision-Language Models (LVLMs), allowing task adaptation via contextual prompts without parameter retraining. However, its application is hindered by the token-intensive nature of inputs and the high complexity of cross-modal few-shot learning, which limits the expressive power of representation methods. To tackle these challenges, we propose \textbf{M2IV}, a method that substitutes explicit demonstrations with learnable \textbf{I}n-context \textbf{V}ectors directly integrated into LVLMs. By exploiting the complementary strengths of multi-head attention (\textbf{M}HA) and multi-layer perceptrons (\textbf{M}LP), M2IV achieves robust cross-modal fidelity and fine-grained semantic distillation through training. This significantly enhances performance across diverse LVLMs and tasks and scales efficiently to many-shot scenarios, bypassing the context window limitations. We also introduce \textbf{VLibrary}, a repository for storing and retrieving M2IV, enabling flexible LVLM steering for tasks like cross-modal alignment, customized generation and safety improvement. Experiments across seven benchmarks and three LVLMs show that M2IV surpasses Vanilla ICL and prior representation engineering approaches, with an average accuracy gain of \textbf{3.74\%} over ICL with the same shot count, alongside substantial efficiency advantages.
Abstract:Multimodal in-context learning (ICL) has emerged as a key capability of Large Vision-Language Models (LVLMs), driven by their increasing scale and applicability. Despite its promise, effective ICL in the multimodal setting remains challenging due to the inherent complexity of image-text inputs and the high sensitivity of ICL performance to input configurations. In this work, we shed light on the core mechanism underlying multimodal ICL, identifying task mapping as a crucial factor in configuring robust in-context demonstration (ICD) sequences. Building on these insights, we propose \textit{SabER}, a lightweight yet powerful decoder-only transformer equipped with task-aware attention, which intelligently selects and arranges ICDs from a demonstration library in an autoregressive fashion. This design enables fine-grained feature extraction and cross-modal reasoning, iteratively refining task mapping to generate high-quality ICD sequences. Through extensive experiments covering five LVLMs and nine benchmark datasets, SabER not only demonstrates strong empirical performance, but also provides deeper understanding of how task semantics interact with multimodal ICDs. Our findings highlight the importance of principled ICD sequence configuration and open new avenues to enhance multimodal ICL in a wide range of real-world scenarios.
Abstract:Aspect-based sentiment analysis (ABSA) is a crucial task in information extraction and sentiment analysis, aiming to identify aspects with associated sentiment elements in text. However, existing ABSA datasets are predominantly English-centric, limiting the scope for multilingual evaluation and research. To bridge this gap, we present M-ABSA, a comprehensive dataset spanning 7 domains and 21 languages, making it the most extensive multilingual parallel dataset for ABSA to date. Our primary focus is on triplet extraction, which involves identifying aspect terms, aspect categories, and sentiment polarities. The dataset is constructed through an automatic translation process with human review to ensure quality. We perform extensive experiments using various baselines to assess performance and compatibility on M-ABSA. Our empirical findings highlight that the dataset enables diverse evaluation tasks, such as multilingual and multi-domain transfer learning, and large language model evaluation, underscoring its inclusivity and its potential to drive advancements in multilingual ABSA research.
Abstract:Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains. Despite their remarkable capabilities, LLMs typically lack personalized recommendations and diagnosis analysis in sophisticated medical applications, causing hallucinations and performance bottlenecks. To address these challenges, this paper proposes MedAide, an LLM-based omni medical multi-agent collaboration framework for specialized healthcare services. Specifically, MedAide first performs query rewriting through retrieval-augmented generation to accomplish accurate medical intent understanding. Immediately, we devise a contextual encoder to obtain intent prototype embeddings, which are used to recognize fine-grained intents by similarity matching. According to the intent relevance, the activated agents collaborate effectively to provide integrated decision analysis. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.
Abstract:Large language models (LLMs) have achieved impressive advancements across numerous disciplines, yet the critical issue of knowledge conflicts, a major source of hallucinations, has rarely been studied. Only a few research explored the conflicts between the inherent knowledge of LLMs and the retrieved contextual knowledge. However, a thorough assessment of knowledge conflict in LLMs is still missing. Motivated by this research gap, we present ConflictBank, the first comprehensive benchmark developed to systematically evaluate knowledge conflicts from three aspects: (i) conflicts encountered in retrieved knowledge, (ii) conflicts within the models' encoded knowledge, and (iii) the interplay between these conflict forms. Our investigation delves into four model families and twelve LLM instances, meticulously analyzing conflicts stemming from misinformation, temporal discrepancies, and semantic divergences. Based on our proposed novel construction framework, we create 7,453,853 claim-evidence pairs and 553,117 QA pairs. We present numerous findings on model scale, conflict causes, and conflict types. We hope our ConflictBank benchmark will help the community better understand model behavior in conflicts and develop more reliable LLMs.