Abstract:Large language models (LLMs) can recall a wide range of factual knowledge across languages. However, existing factual recall evaluations primarily assess fact retrieval in isolation, where the queried entity is explicitly named and the fact is requested directly. In natural language use, facts are often accessed through context, where the relevant entity is introduced only indirectly. In this work, we study contextually mediated factual recall, asking whether LLMs can reliably retrieve factual knowledge when the target entity is embedded in a naturalistic context rather than queried explicitly, across languages. We construct controlled prompts that preserve the underlying fact while introducing referential mediation through contextual sentences. To disentangle contextual effects from name-specific associations, we further compare performance using synthetic names and real names across languages. Evaluating multiple model families in five languages, we find that contextual mediation consistently degrades factual recall, with substantial variation across relations. Larger models are more robust to contextual mediation, exhibiting a reduced performance gap relative to direct queries, while the effect of real names and name origin is mixed and unsystematic. These findings highlight a gap between isolated factual recall and context-dependent language understanding in multilingual LLMs.
Abstract:Hallucination is a central failure mode in large language models (LLMs). We focus on hallucinations of answers to questions like: "Which instrument did Glenn Gould play?", but we ask these questions for synthetic entities that are unknown to the model. Surprisingly, we find that medium-size models like Gemma-7B-IT frequently hallucinate, i.e., they have difficulty recognizing that the hallucinated fact is not part of their knowledge. We hypothesize that an important factor in causing these hallucinations is the linearity of the relation: linear relations tend to be stored more abstractly, making it difficult for the LLM to assess its knowledge; the facts of nonlinear relations tend to be stored more directly, making knowledge assessment easier. To investigate this hypothesis, we create SyntHal, a dataset of 6000 synthetic entities for six relations. In our experiments with four models, we determine, for each relation, the hallucination rate on SyntHal and also measure its linearity, using $Δ\cos$. We find a strong correlation ($r \in [.78,.82]$) between relational linearity and hallucination rate, providing evidence for our hypothesis that the underlying storage of triples of a relation is a factor in how well a model can self-assess its knowledge. This finding has implications for how to manage hallucination behavior and suggests new research directions for improving the representation of factual knowledge in LLMs.
Abstract:Confidence estimation (CE) indicates how reliable the answers of large language models (LLMs) are, and can impact user trust and decision-making. Existing work evaluates CE methods almost exclusively through calibration, examining whether stated confidence aligns with accuracy, or discrimination, whether confidence is ranked higher for correct predictions than incorrect ones. However, these facets ignore pitfalls of CE in the context of LLMs and language variation: confidence estimates should remain consistent under semantically equivalent prompt or answer variations, and should change when the answer meaning differs. Therefore, we present a comprehensive evaluation framework for CE that measures their confidence quality on three new aspects: robustness of confidence against prompt perturbations, stability across semantic equivalent answers, and sensitivity to semantically different answers. In our work, we demonstrate that common CE methods for LLMs often fail on these metrics: methods that achieve good performance on calibration or discrimination are not robust to prompt variations or are not sensitive to answer changes. Overall, our framework reveals limitations of existing CE evaluations relevant for real-world LLM use cases and provides practical guidance for selecting and designing more reliable CE methods.
Abstract:Large Language Model (LLM) based summarization and text generation are increasingly used for producing and rewriting text, raising concerns about political framing in journalism where subtle wording choices can shape interpretation. Across nine state-of-the-art LLMs, we study political framing by testing whether LLMs' classification-based bias signals align with framing behavior in their generated summaries. We first compare few-shot ideology predictions against LEFT/CENTER/RIGHT labels. We then generate "steered" summaries under FAITHFUL, CENTRIST, LEFT, and RIGHT prompts, and score all outputs using a single fixed ideology evaluator. We find pervasive ideological center-collapse in both article-level ratings and generated text, indicating a systematic tendency toward centrist framing. Among evaluated models, Grok 4 is by far the most ideologically expressive generator, while Claude Sonnet 4.5 and Llama 3.1 achieve the strongest bias-rating performance among commercial and open-weight models, respectively.
Abstract:Large reasoning models (LRMs) achieve strong performance on mathematical reasoning tasks, often attributed to their capability to generate explicit chain-of-thought (CoT) explanations. However, recent work shows that LRMs often arrive at the correct answer before completing these textual reasoning steps, indicating the presence of latent reasoning -- internal, non-verbal computation encoded in hidden states. While this phenomenon has been explored in English, its multilingual behavior remains largely unknown. In this paper, we conduct a systematic investigation of multilingual latent reasoning in LRMs across 11 languages. Using a truncation-based strategy, we examine how the correct answer emerges as the model is given only partial reasoning traces, allowing us to measure stepwise latent prediction formation. Our results reveal clear evidence of multilingual latent reasoning, though unevenly: strong in resource-rich languages, weaker in low-resource ones, and broadly less observable on harder benchmarks. To understand whether these differences reflect distinct internal mechanisms, we further perform representational analyses. Despite surface-level disparities, we find that the internal evolution of predictions is highly consistent across languages and broadly aligns with English -- a pattern suggesting an English-centered latent reasoning pathway.
Abstract:Counterfactuals refer to minimally edited inputs that cause a model's prediction to change, serving as a promising approach to explaining the model's behavior. Large language models (LLMs) excel at generating English counterfactuals and demonstrate multilingual proficiency. However, their effectiveness in generating multilingual counterfactuals remains unclear. To this end, we conduct a comprehensive study on multilingual counterfactuals. We first conduct automatic evaluations on both directly generated counterfactuals in the target languages and those derived via English translation across six languages. Although translation-based counterfactuals offer higher validity than their directly generated counterparts, they demand substantially more modifications and still fall short of matching the quality of the original English counterfactuals. Second, we find the patterns of edits applied to high-resource European-language counterfactuals to be remarkably similar, suggesting that cross-lingual perturbations follow common strategic principles. Third, we identify and categorize four main types of errors that consistently appear in the generated counterfactuals across languages. Finally, we reveal that multilingual counterfactual data augmentation (CDA) yields larger model performance improvements than cross-lingual CDA, especially for lower-resource languages. Yet, the imperfections of the generated counterfactuals limit gains in model performance and robustness.
Abstract:Large language models (LLMs) are increasingly deployed in multilingual, real-world applications with user inputs -- naturally introducing typographical errors (typos). Yet most benchmarks assume clean input, leaving the robustness of LLMs to typos across languages largely underexplored. To address this gap, we introduce MulTypo, a multilingual typo generation algorithm that simulates human-like errors based on language-specific keyboard layouts and typing behavior. We evaluate 18 open-source LLMs across three model families and five downstream tasks spanning language inference, multi-choice question answering, mathematical reasoning, and machine translation tasks. Our results show that typos consistently degrade performance, particularly in generative tasks and those requiring reasoning -- while the natural language inference task is comparatively more robust. Instruction tuning improves clean-input performance but may increase brittleness under noise. We also observe language-dependent robustness: high-resource languages are generally more robust than low-resource ones, and translation from English is more robust than translation into English. Our findings underscore the need for noise-aware training and multilingual robustness evaluation. We make our code and data publicly available.
Abstract:Large reasoning models (LRMs) increasingly rely on step-by-step Chain-of-Thought (CoT) reasoning to improve task performance, particularly in high-resource languages such as English. While recent work has examined final-answer accuracy in multilingual settings, the thinking traces themselves, i.e., the intermediate steps that lead to the final answer, remain underexplored. In this paper, we present the first comprehensive study of multilingual CoT reasoning, evaluating three key dimensions: performance, consistency, and faithfulness. We begin by measuring language compliance, answer accuracy, and answer consistency when LRMs are explicitly instructed or prompt-hacked to think in a target language, revealing strong language preferences and divergent performance across languages. Next, we assess crosslingual consistency of thinking traces by interchanging them between languages. We find that the quality and effectiveness of thinking traces vary substantially depending on the prompt language. Finally, we adapt perturbation-based techniques -- i.e., truncation and error injection -- to probe the faithfulness of thinking traces across languages, showing that models rely on traces to varying degrees. We release our code and data to support future research.
Abstract:Autoregressive language models are vulnerable to orthographic attacks, where input text is perturbed with characters from multilingual alphabets, leading to substantial performance degradation. This vulnerability primarily stems from the out-of-vocabulary issue inherent in subword tokenizers and their embeddings. To address this limitation, we propose a pixel-based generative language model that replaces the text-based embeddings with pixel-based representations by rendering words as individual images. This design provides stronger robustness to noisy inputs, while an extension of compatibility to multilingual text across diverse writing systems. We evaluate the proposed method on the multilingual LAMBADA dataset, WMT24 dataset and the SST-2 benchmark, demonstrating both its resilience to orthographic noise and its effectiveness in multilingual settings.
Abstract:Refusal mechanisms in large language models (LLMs) are essential for ensuring safety. Recent research has revealed that refusal behavior can be mediated by a single direction in activation space, enabling targeted interventions to bypass refusals. While this is primarily demonstrated in an English-centric context, appropriate refusal behavior is important for any language, but poorly understood. In this paper, we investigate the refusal behavior in LLMs across 14 languages using PolyRefuse, a multilingual safety dataset created by translating malicious and benign English prompts into these languages. We uncover the surprising cross-lingual universality of the refusal direction: a vector extracted from English can bypass refusals in other languages with near-perfect effectiveness, without any additional fine-tuning. Even more remarkably, refusal directions derived from any safety-aligned language transfer seamlessly to others. We attribute this transferability to the parallelism of refusal vectors across languages in the embedding space and identify the underlying mechanism behind cross-lingual jailbreaks. These findings provide actionable insights for building more robust multilingual safety defenses and pave the way for a deeper mechanistic understanding of cross-lingual vulnerabilities in LLMs.