Abstract:Referring Video Object Segmentation is an emerging multi-modal task that aims to segment objects in the video given a natural language expression. In this work, we build two instance-centric models and fuse predicted results from frame-level and instance-level. First, we introduce instance mask into the DETR-based model for query initialization to achieve temporal enhancement and employ SAM for spatial refinement. Secondly, we build an instance retrieval model conducting binary instance mask classification whether the instance is referred. Finally, we fuse predicted results and our method achieved a score of 52.67 J&F in the validation phase and 60.36 J&F in the test phase, securing the final ranking of 3rd place in the 6-th LSVOS Challenge RVOS Track.
Abstract:Pixel-level Video Understanding in the Wild Challenge (PVUW) focus on complex video understanding. In this CVPR 2024 workshop, we add two new tracks, Complex Video Object Segmentation Track based on MOSE dataset and Motion Expression guided Video Segmentation track based on MeViS dataset. In the two new tracks, we provide additional videos and annotations that feature challenging elements, such as the disappearance and reappearance of objects, inconspicuous small objects, heavy occlusions, and crowded environments in MOSE. Moreover, we provide a new motion expression guided video segmentation dataset MeViS to study the natural language-guided video understanding in complex environments. These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios. The MOSE challenge had 140 registered teams in total, 65 teams participated the validation phase and 12 teams made valid submissions in the final challenge phase. The MeViS challenge had 225 registered teams in total, 50 teams participated the validation phase and 5 teams made valid submissions in the final challenge phase.
Abstract:Motion Expression guided Video Segmentation is a challenging task that aims at segmenting objects in the video based on natural language expressions with motion descriptions. Unlike the previous referring video object segmentation (RVOS), this task focuses more on the motion in video content for language-guided video object segmentation, requiring an enhanced ability to model longer temporal, motion-oriented vision-language data. In this report, based on the RVOS methods, we successfully introduce mask information obtained from the video instance segmentation model as preliminary information for temporal enhancement and employ SAM for spatial refinement. Finally, our method achieved a score of 49.92 J &F in the validation phase and 54.20 J &F in the test phase, securing the final ranking of 2nd in the MeViS Track at the CVPR 2024 PVUW Challenge.
Abstract:Visual grounding (VG) aims at locating the foreground entities that match the given natural language expression. Previous datasets and methods for classic VG task mainly rely on the prior assumption that the given expression must literally refer to the target object, which greatly impedes the practical deployment of agents in real-world scenarios. Since users usually prefer to provide the intention-based expressions for the desired object instead of covering all the details, it is necessary for the agents to interpret the intention-driven instructions. Thus, in this work, we take a step further to the intention-driven visual-language (V-L) understanding. To promote classic VG towards human intention interpretation, we propose a new intention-driven visual grounding (IVG) task and build a largest-scale IVG dataset named IntentionVG with free-form intention expressions. Considering that practical agents need to move and find specific targets among various scenarios to realize the grounding task, our IVG task and IntentionVG dataset have taken the crucial properties of both multi-scenario perception and egocentric view into consideration. Besides, various types of models are set up as the baselines to realize our IVG task. Extensive experiments on our IntentionVG dataset and baselines demonstrate the necessity and efficacy of our method for the V-L field. To foster future research in this direction, our newly built dataset and baselines will be publicly available.
Abstract:The Few-Shot Segmentation (FSS) aims to accomplish the novel class segmentation task with a few annotated images. Current FSS research based on meta-learning focus on designing a complex interaction mechanism between the query and support feature. However, unlike humans who can rapidly learn new things from limited samples, the existing approach relies solely on fixed feature matching to tackle new tasks, lacking adaptability. In this paper, we propose a novel framework based on the adapter mechanism, namely Adaptive FSS, which can efficiently adapt the existing FSS model to the novel classes. In detail, we design the Prototype Adaptive Module (PAM), which utilizes accurate category information provided by the support set to derive class prototypes, enhancing class-specific information in the multi-stage representation. In addition, our approach is compatible with diverse FSS methods with different backbones by simply inserting PAM between the layers of the encoder. Experiments demonstrate that our method effectively improves the performance of the FSS models (e.g., MSANet, HDMNet, FPTrans, and DCAMA) and achieve new state-of-the-art (SOTA) results (i.e., 72.4\% and 79.1\% mIoU on PASCAL-5$^i$ 1-shot and 5-shot settings, 52.7\% and 60.0\% mIoU on COCO-20$^i$ 1-shot and 5-shot settings). Our code can be available at https://github.com/jingw193/AdaptiveFSS.
Abstract:Referring expression segmentation (RES) aims at segmenting the foreground masks of the entities that match the descriptive natural language expression. Previous datasets and methods for classic RES task heavily rely on the prior assumption that one expression must refer to object-level targets. In this paper, we take a step further to finer-grained part-level RES task. To promote the object-level RES task towards finer-grained vision-language understanding, we put forward a new multi-granularity referring expression segmentation (MRES) task and construct an evaluation benchmark called RefCOCOm by manual annotations. By employing our automatic model-assisted data engine, we build the largest visual grounding dataset namely MRES-32M, which comprises over 32.2M high-quality masks and captions on the provided 1M images. Besides, a simple yet strong model named UniRES is designed to accomplish the unified object-level and part-level grounding task. Extensive experiments on our RefCOCOm for MRES and three datasets (i.e., RefCOCO(+/g) for classic RES task demonstrate the superiority of our method over previous state-of-the-art methods. To foster future research into fine-grained visual grounding, our benchmark RefCOCOm, the MRES-32M dataset and model UniRES will be publicly available at https://github.com/Rubics-Xuan/MRES
Abstract:Referring image segmentation (RIS) is a fundamental vision-language task that intends to segment a desired object from an image based on a given natural language expression. Due to the essentially distinct data properties between image and text, most of existing methods either introduce complex designs towards fine-grained vision-language alignment or lack required dense alignment, resulting in scalability issues or mis-segmentation problems such as over- or under-segmentation. To achieve effective and efficient fine-grained feature alignment in the RIS task, we explore the potential of masked multimodal modeling coupled with self-distillation and propose a novel cross-modality masked self-distillation framework named CM-MaskSD, in which our method inherits the transferred knowledge of image-text semantic alignment from CLIP model to realize fine-grained patch-word feature alignment for better segmentation accuracy. Moreover, our CM-MaskSD framework can considerably boost model performance in a nearly parameter-free manner, since it shares weights between the main segmentation branch and the introduced masked self-distillation branches, and solely introduces negligible parameters for coordinating the multimodal features. Comprehensive experiments on three benchmark datasets (i.e. RefCOCO, RefCOCO+, G-Ref) for the RIS task convincingly demonstrate the superiority of our proposed framework over previous state-of-the-art methods.