Abstract:Language-guided image retrieval enables users to search for images and interact with the retrieval system more naturally and expressively by using a reference image and a relative caption as a query. Most existing studies mainly focus on designing image-text composition architecture to extract discriminative visual-linguistic relations. Despite great success, we identify an inherent problem that obstructs the extraction of discriminative features and considerably compromises model training: \textbf{triplet ambiguity}. This problem stems from the annotation process wherein annotators view only one triplet at a time. As a result, they often describe simple attributes, such as color, while neglecting fine-grained details like location and style. This leads to multiple false-negative candidates matching the same modification text. We propose a novel Consensus Network (Css-Net) that self-adaptively learns from noisy triplets to minimize the negative effects of triplet ambiguity. Inspired by the psychological finding that groups perform better than individuals, Css-Net comprises 1) a consensus module featuring four distinct compositors that generate diverse fused image-text embeddings and 2) a Kullback-Leibler divergence loss, which fosters learning among the compositors, enabling them to reduce biases learned from noisy triplets and reach a consensus. The decisions from four compositors are weighted during evaluation to further achieve consensus. Comprehensive experiments on three datasets demonstrate that Css-Net can alleviate triplet ambiguity, achieving competitive performance on benchmarks, such as $+2.77\%$ R@10 and $+6.67\%$ R@50 on FashionIQ.
Abstract:Misalignment between the outputs of a vision-language (VL) model and task goal hinders its deployment. This issue can worsen when there are distribution shifts between the training and test data. To address this problem, prevailing fully test-time adaptation~(TTA) methods bootstrap themselves through entropy minimization. However, minimizing the entropy of the predictions makes the model overfit to incorrect output distributions of itself. In this work, we propose TTA with feedback to avoid such overfitting and align the model with task goals. Specifically, we adopt CLIP as reward model to provide feedback for VL models during test time in various tasks, including image classification, image-text retrieval, and image captioning. Given a single test sample, the model aims to maximize CLIP reward through reinforcement learning. We adopt a reward design with the average CLIP score of sampled candidates as the baseline. This design is simple and surprisingly effective when combined with various task-specific sampling strategies. The entire system is flexible, allowing the reward model to be extended with multiple CLIP models. Plus, a momentum buffer can be used to memorize and leverage the learned knowledge from multiple test samples. Extensive experiments demonstrate that our method significantly improves different VL models after TTA.
Abstract:Temporal action localization (TAL), which involves recognizing and locating action instances, is a challenging task in video understanding. Most existing approaches directly predict action classes and regress offsets to boundaries, while overlooking the discrepant importance of each frame. In this paper, we propose an Action Sensitivity Learning framework (ASL) to tackle this task, which aims to assess the value of each frame and then leverage the generated action sensitivity to recalibrate the training procedure. We first introduce a lightweight Action Sensitivity Evaluator to learn the action sensitivity at the class level and instance level, respectively. The outputs of the two branches are combined to reweight the gradient of the two sub-tasks. Moreover, based on the action sensitivity of each frame, we design an Action Sensitive Contrastive Loss to enhance features, where the action-aware frames are sampled as positive pairs to push away the action-irrelevant frames. The extensive studies on various action localization benchmarks (i.e., MultiThumos, Charades, Ego4D-Moment Queries v1.0, Epic-Kitchens 100, Thumos14 and ActivityNet1.3) show that ASL surpasses the state-of-the-art in terms of average-mAP under multiple types of scenarios, e.g., single-labeled, densely-labeled and egocentric.
Abstract:Pre-trained vision-language models are the de-facto foundation models for various downstream tasks. However, this trend has not extended to the field of scene text recognition (STR), despite the potential of CLIP to serve as a powerful scene text reader. CLIP can robustly identify regular (horizontal) and irregular (rotated, curved, blurred, or occluded) text in natural images. With such merits, we introduce CLIP4STR, a simple yet effective STR method built upon image and text encoders of CLIP. It has two encoder-decoder branches: a visual branch and a cross-modal branch. The visual branch provides an initial prediction based on the visual feature, and the cross-modal branch refines this prediction by addressing the discrepancy between the visual feature and text semantics. To fully leverage the capabilities of both branches, we design a dual predict-and-refine decoding scheme for inference. CLIP4STR achieves new state-of-the-art performance on 11 STR benchmarks. Additionally, a comprehensive empirical study is provided to enhance the understanding of the adaptation of CLIP to STR. We believe our method establishes a simple but strong baseline for future STR research with VL models.
Abstract:This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in https://github.com/zjunlp/AutoKG.
Abstract:In this paper, we tackle the problem of sign language translation (SLT) without gloss annotations. Although intermediate representation like gloss has been proven effective, gloss annotations are hard to acquire, especially in large quantities. This limits the domain coverage of translation datasets, thus handicapping real-world applications. To mitigate this problem, we design the Gloss-Free End-to-end sign language translation framework (GloFE). Our method improves the performance of SLT in the gloss-free setting by exploiting the shared underlying semantics of signs and the corresponding spoken translation. Common concepts are extracted from the text and used as a weak form of intermediate representation. The global embedding of these concepts is used as a query for cross-attention to find the corresponding information within the learned visual features. In a contrastive manner, we encourage the similarity of query results between samples containing such concepts and decrease those that do not. We obtained state-of-the-art results on large-scale datasets, including OpenASL and How2Sign. The code and model will be available at https://github.com/HenryLittle/GloFE.
Abstract:Multimodal Knowledge Graph Construction (MMKC) refers to the process of creating a structured representation of entities and relationships through multiple modalities such as text, images, videos, etc. However, existing MMKC models have limitations in handling the introduction of new entities and relations due to the dynamic nature of the real world. Moreover, most state-of-the-art studies in MMKC only consider entity and relation extraction from text data while neglecting other multi-modal sources. Meanwhile, the current continual setting for knowledge graph construction only consider entity and relation extraction from text data while neglecting other multi-modal sources. Therefore, there arises the need to explore the challenge of continuous multimodal knowledge graph construction to address the phenomenon of catastrophic forgetting and ensure the retention of past knowledge extracted from different forms of data. This research focuses on investigating this complex topic by developing lifelong multimodal benchmark datasets. Based on the empirical findings that several state-of-the-art MMKC models, when trained on multimedia data, might unexpectedly underperform compared to those solely utilizing textual resources in a continual setting, we propose a Lifelong MultiModal Consistent Transformer Framework (LMC) for continuous multimodal knowledge graph construction. By combining the advantages of consistent KGC strategies within the context of continual learning, we achieve greater balance between stability and plasticity. Our experiments demonstrate the superior performance of our method over prevailing continual learning techniques or multimodal approaches in dynamic scenarios. Code and datasets can be found at https://github.com/zjunlp/ContinueMKGC.
Abstract:Scaling language models have revolutionized widespread NLP tasks, yet little comprehensively explored few-shot relation extraction with large language models. In this paper, we investigate principal methodologies, in-context learning and data generation, for few-shot relation extraction via GPT-3.5 through exhaustive experiments. To enhance few-shot performance, we further propose task-related instructions and schema-constrained data generation. We observe that in-context learning can achieve performance on par with previous prompt learning approaches, and data generation with the large language model can boost previous solutions to obtain new state-of-the-art few-shot results on four widely-studied relation extraction datasets. We hope our work can inspire future research for the capabilities of large language models in few-shot relation extraction. Code is available in https://github.com/zjunlp/DeepKE/tree/main/example/llm.
Abstract:Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness. Although these two metrics are responsible for different ranges of temporal consistency, existing state-of-the-art methods treat them as a unified problem and use monotonous modeling structures (e.g., RNN or attention-based block) to design their networks. However, using a single kind of modeling structure is difficult to balance the learning of short-term and long-term temporal correlations, and may bias the network to one of them, leading to undesirable predictions like global location shift, temporal inconsistency, and insufficient local details. To solve these problems, we propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT). First, a global transformer is introduced with a Masked Pose and Shape Estimation strategy for long-term modeling. The strategy stimulates the global transformer to learn more inter-frame correlations by randomly masking the features of several frames. Second, a local transformer is responsible for exploiting local details on the human mesh and interacting with the global transformer by leveraging cross-attention. Moreover, a Hierarchical Spatial Correlation Regressor is further introduced to refine intra-frame estimations by decoupled global-local representation and implicit kinematic constraints. Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M. Codes are available at https://github.com/sxl142/GLoT.
Abstract:Recently, visual-language navigation (VLN) -- entailing robot agents to follow navigation instructions -- has shown great advance. However, existing literature put most emphasis on interpreting instructions into actions, only delivering "dumb" wayfinding agents. In this article, we devise LANA, a language-capable navigation agent which is able to not only execute human-written navigation commands, but also provide route descriptions to humans. This is achieved by simultaneously learning instruction following and generation with only one single model. More specifically, two encoders, respectively for route and language encoding, are built and shared by two decoders, respectively, for action prediction and instruction generation, so as to exploit cross-task knowledge and capture task-specific characteristics. Throughout pretraining and fine-tuning, both instruction following and generation are set as optimization objectives. We empirically verify that, compared with recent advanced task-specific solutions, LANA attains better performances on both instruction following and route description, with nearly half complexity. In addition, endowed with language generation capability, LANA can explain to humans its behaviors and assist human's wayfinding. This work is expected to foster future efforts towards building more trustworthy and socially-intelligent navigation robots.