Abstract:Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://transductive-visualprogram.github.io/.
Abstract:While reinforcement learning (RL) shows promise in training tool-use large language models (LLMs) using verifiable outcome rewards, existing methods largely overlook the potential of explicit reasoning rewards to bolster reasoning and tool utilization. Furthermore, natively combining reasoning and outcome rewards may yield suboptimal performance or conflict with the primary optimization objective. To address this, we propose advantage-weighted policy optimization (AWPO) -- a principled RL framework that effectively integrates explicit reasoning rewards to enhance tool-use capability. AWPO incorporates variance-aware gating and difficulty-aware weighting to adaptively modulate advantages from reasoning signals based on group-relative statistics, alongside a tailored clipping mechanism for stable optimization. Extensive experiments demonstrate that AWPO achieves state-of-the-art performance across standard tool-use benchmarks, significantly outperforming strong baselines and leading closed-source models in challenging multi-turn scenarios. Notably, with exceptional parameter efficiency, our 4B model surpasses Grok-4 by 16.0 percent in multi-turn accuracy while preserving generalization capability on the out-of-distribution MMLU-Pro benchmark.
Abstract:Training LLMs to invoke tools and leverage retrieved information necessitates high-quality, diverse data. However, existing pipelines for synthetic data generation often rely on tens of thousands of real API calls to enhance generalization, incurring prohibitive costs while lacking multi-hop reasoning and self-reflection. To address these limitations, we introduce ToolForge, an automated synthesis framework that achieves strong real-world tool-calling performance by constructing only a small number of virtual tools, eliminating the need for real API calls. ToolForge leverages a (question, golden context, answer) triple to synthesize large-scale tool-learning data specifically designed for multi-hop search scenarios, further enriching the generated data through multi-hop reasoning and self-reflection mechanisms. To ensure data fidelity, we employ a Multi-Layer Validation Framework that integrates both rule-based and model-based assessments. Empirical results show that a model with only 8B parameters, when trained on our synthesized data, outperforms GPT-4o on multiple benchmarks. Our code and dataset are publicly available at https://github.com/Buycar-arb/ToolForge .
Abstract:Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench includes over 150,000 high-quality entries from various cities and business types. We construct 300 multi-hop QA tasks based on real user queries, challenging agents to understand questions and retrieve information in multiple steps. We also developed LocalPlayground, a unified environment integrating multiple tools for agent interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.1) achieves only 34.34% correctness, and most models have issues with completeness (average 77.33%) and faithfulness (average 61.99%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at localsearchbench.github.io.
Abstract:Large Language Models (LLMs) based agents have demonstrated remarkable potential in autonomous task-solving across complex, open-ended environments. A promising approach for improving the reasoning capabilities of LLM agents is to better utilize prior experiences in guiding current decisions. However, LLMs acquire experience either through implicit memory via training, which suffers from catastrophic forgetting and limited interpretability, or explicit memory via prompting, which lacks adaptability. In this paper, we introduce a novel agent-centric, trainable, multi-layered graph memory framework and evaluate how context memory enhances the ability of LLMs to utilize parametric information. The graph abstracts raw agent trajectories into structured decision paths in a state machine and further distills them into high-level, human-interpretable strategic meta-cognition. In order to make memory adaptable, we propose a reinforcement-based weight optimization procedure that estimates the empirical utility of each meta-cognition based on reward feedback from downstream tasks. These optimized strategies are then dynamically integrated into the LLM agent's training loop through meta-cognitive prompting. Empirically, the learnable graph memory delivers robust generalization, improves LLM agents' strategic reasoning performance, and provides consistent benefits during Reinforcement Learning (RL) training.
Abstract:While specialized AI models excel at isolated video tasks like generation or understanding, real-world applications demand complex, iterative workflows that combine these capabilities. To bridge this gap, we introduce UniVA, an open-source, omni-capable multi-agent framework for next-generation video generalists that unifies video understanding, segmentation, editing, and generation into cohesive workflows. UniVA employs a Plan-and-Act dual-agent architecture that drives a highly automated and proactive workflow: a planner agent interprets user intentions and decomposes them into structured video-processing steps, while executor agents execute these through modular, MCP-based tool servers (for analysis, generation, editing, tracking, etc.). Through a hierarchical multi-level memory (global knowledge, task context, and user-specific preferences), UniVA sustains long-horizon reasoning, contextual continuity, and inter-agent communication, enabling interactive and self-reflective video creation with full traceability. This design enables iterative and any-conditioned video workflows (e.g., text/image/video-conditioned generation $\rightarrow$ multi-round editing $\rightarrow$ object segmentation $\rightarrow$ compositional synthesis) that were previously cumbersome to achieve with single-purpose models or monolithic video-language models. We also introduce UniVA-Bench, a benchmark suite of multi-step video tasks spanning understanding, editing, segmentation, and generation, to rigorously evaluate such agentic video systems. Both UniVA and UniVA-Bench are fully open-sourced, aiming to catalyze research on interactive, agentic, and general-purpose video intelligence for the next generation of multimodal AI systems. (https://univa.online/)
Abstract:Rapid advances in multimodal models demand benchmarks that rigorously evaluate understanding and reasoning in safety-critical, dynamic real-world settings. We present AccidentBench, a large-scale benchmark that combines vehicle accident scenarios with Beyond domains, safety-critical settings in air and water that emphasize spatial and temporal reasoning (e.g., navigation, orientation, multi-vehicle motion). The benchmark contains approximately 2000 videos and over 19000 human-annotated question--answer pairs spanning multiple video lengths (short/medium/long) and difficulty levels (easy/medium/hard). Tasks systematically probe core capabilities: temporal, spatial, and intent understanding and reasoning. By unifying accident-centric traffic scenes with broader safety-critical scenarios in air and water, AccidentBench offers a comprehensive, physically grounded testbed for evaluating models under real-world variability. Evaluations of state-of-the-art models (e.g., Gemini-2.5 Pro and GPT-5) show that even the strongest models achieve only about 18% accuracy on the hardest tasks and longest videos, revealing substantial gaps in real-world temporal, spatial, and intent reasoning. AccidentBench is designed to expose these critical gaps and drive the development of multimodal models that are safer, more robust, and better aligned with real-world safety-critical challenges. The code and dataset are available at: https://github.com/SafeRL-Lab/AccidentBench




Abstract:In this paper, we extend the transfer learning classification framework from regression function-based methods to decision rules. We propose a novel methodology for modeling posterior drift through Bayes decision rules. By exploiting the geometric transformation of the Bayes decision boundary, our method reformulates the problem as a low-dimensional empirical risk minimization problem. Under mild regularity conditions, we establish the consistency of our estimators and derive the risk bounds. Moreover, we illustrate the broad applicability of our method by adapting it to the estimation of optimal individualized treatment rules. Extensive simulation studies and analyses of real-world data further demonstrate both superior performance and robustness of our approach.




Abstract:For domains that involve numerical simulation, it can be computationally expensive to run an ensemble of simulations spanning a parameter space of interest to a user. To this end, an attractive surrogate for simulation is the generative modeling of fields produced by an ensemble, allowing one to synthesize fields in a computationally cheap, yet accurate, manner. However, for the purposes of visual analysis, a limitation of generative models is their lack of control, as it is unclear what one should expect when sampling a field from a model. In this paper we study how to make generative models of fields more controllable, so that users can specify features of interest, in particular topological features, that they wish to see in the output. We propose topology guidance, a method for guiding the sampling process of a generative model, specifically a diffusion model, such that a topological description specified as input is satisfied in the generated output. Central to our method, we couple a coordinate-based neural network used to represent fields, with a diffusion model used for generation. We show how to use topologically-relevant signals provided by the coordinate-based network to help guide the denoising process of a diffusion model. This enables us to faithfully represent a user's specified topology, while ensuring that the output field remains within the generative data distribution. Specifically, we study 2D vector field topology, evaluating our method over an ensemble of fluid flows, where we show that generated vector fields faithfully adhere to the location, and type, of critical points over the spatial domain. We further show the benefits of our method in aiding the comparison of ensembles, allowing one to explore commonalities and differences in distributions along prescribed topological features.
Abstract:How do two individuals differ when performing the same action? In this work, we introduce Video Action Differencing (VidDiff), the novel task of identifying subtle differences between videos of the same action, which has many applications, such as coaching and skill learning. To enable development on this new task, we first create VidDiffBench, a benchmark dataset containing 549 video pairs, with human annotations of 4,469 fine-grained action differences and 2,075 localization timestamps indicating where these differences occur. Our experiments demonstrate that VidDiffBench poses a significant challenge for state-of-the-art large multimodal models (LMMs), such as GPT-4o and Qwen2-VL. By analyzing failure cases of LMMs on VidDiffBench, we highlight two key challenges for this task: localizing relevant sub-actions over two videos and fine-grained frame comparison. To overcome these, we propose the VidDiff method, an agentic workflow that breaks the task into three stages: action difference proposal, keyframe localization, and frame differencing, each stage utilizing specialized foundation models. To encourage future research in this new task, we release the benchmark at https://huggingface.co/datasets/jmhb/VidDiffBench and code at http://jmhb0.github.io/viddiff.