Future wireless communication systems are likely to adopt extremely large aperture arrays and millimeter-wave/sub-THz frequency bands to achieve higher throughput, lower latency, and higher energy efficiency. Conventional wireless systems predominantly operate in the far field (FF) of the radiation source of signals. As the array size increases and the carrier wavelength shrinks, however, the near field (NF) becomes non-negligible. Since the NF and FF differ in many aspects, it is essential to distinguish their corresponding regions. In this article, we first provide a comprehensive overview of the existing NF-FF boundaries, then introduce a novel NF-FF demarcation method based on effective degrees of freedom (EDoF) of the channel. Since EDoF is intimately related to spectral efficiency, the EDoF-based border is able to characterize key channel performance more accurately, as compared with the classic Rayleigh distance. Furthermore, we analyze the main features of the EDoF-based NF-FF boundary and provide insights into wireless system design.
Fast and precise beam alignment is crucial for high-quality data transmission in millimeter-wave (mmWave) communication systems, where large-scale antenna arrays are utilized to overcome the severe propagation loss. To tackle the challenging problem, we propose a novel deep learning-based hierarchical beam alignment method for both multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) systems, which learns two tiers of probing codebooks (PCs) and uses their measurements to predict the optimal beam in a coarse-to-fine search manner. Specifically, a hierarchical beam alignment network (HBAN) is developed for MISO systems, which first performs coarse channel measurement using a tier-1 PC, then selects a tier-2 PC for fine channel measurement, and finally predicts the optimal beam based on both coarse and fine measurements. The propounded HBAN is trained in two steps: the tier-1 PC and the tier-2 PC selector are first trained jointly, followed by the joint training of all the tier-2 PCs and beam predictors. Furthermore, an HBAN for MIMO systems is proposed to directly predict the optimal beam pair without performing beam alignment individually at the transmitter and receiver. Numerical results demonstrate that the proposed HBANs are superior to the state-of-art methods in both alignment accuracy and signaling overhead reduction.
This paper investigates an intelligent reflecting surface (IRS) aided millimeter-wave integrated sensing and communication (ISAC) system. Specifically, based on the passive beam scanning in the downlink, the IRS finds the optimal beam for reflecting the signals from the base station to a communication user. Meanwhile, the IRS estimates the angle of a nearby target based on its echo signal received by the sensing elements mounted on the IRS (i.e., semi-passive IRS). We propose an ISAC protocol for achieving the above objective via simultaneous (beam) training and sensing (STAS). Then, we derive the achievable rate of the communication user and the Cramer-Rao bound (CRB) of the angle estimation for the sensing target in closed-form. The achievable rate and CRB exhibit different performance against the duration of beam scanning. Specifically, the average achievable rate initially rises and subsequently declines, while the CRB monotonically decreases. Consequently, the duration of beam scanning should be carefully selected to balance communication and sensing performance. Simulation results have verified our analytical findings and shown that, thanks to the efficient use of downlink beam scanning signal for simultaneous communication and target sensing, the STAS protocol outperforms the benchmark protocol with orthogonal beam training and sensing.
Since the start of 5G work in 3GPP in early 2016, tremendous progress has been made in both standardization and commercial deployments. 3GPP is now entering the second phase of 5G standardization, known as 5G-Advanced, built on the 5G baseline in 3GPP Releases 15, 16, and 17. 3GPP Release 18, the start of 5G-Advanced, includes a diverse set of features that cover both device and network evolutions, providing balanced mobile broadband evolution and further vertical domain expansion and accommodating both immediate and long-term commercial needs. 5G-Advanced will significantly expand 5G capabilities, address many new use cases, transform connectivity experiences, and serve as an essential step in developing mobile communications towards 6G. This paper provides a comprehensive overview of the 3GPP 5G-Advanced development, introducing the prominent state-of-the-art technologies investigated in 3GPP and identifying key evolution directions for future research and standardization.
In this paper, the level of sparsity is examined at 6, 26, and 132 GHz carrier frequencies by conducting channel measurements in an indoor office environment. By using the Gini index (value between 0 and 1) as a metric for characterizing sparsity, we show that increasing carrier frequency leads to increased levels of sparsity. The measured channel impulse responses are used to derive a Third-Generation Partnership Project (3GPP)-style propagation model, used to calculate the Gini index for the comparison of the channel sparsity between the measurement and simulation based on the 3GPP model. Our results show that the mean value of the Gini index in measurement is over twice the value in simulation, implying that the 3GPP channel model does not capture the effects of sparsity in the delay domain as frequency increases. In addition, a new intra-cluster power allocation model based on measurements is proposed to characterize the effects of sparsity in the delay domain of the 3GPP channel model. The accuracy of the proposed model is analyzed using theoretical derivations and simulations. Using the derived intra-cluster power allocation model, the mean value of the Gini index is 0.97, while the spread of variability is restricted to 0.01, demonstrating that the proposed model is suitable for 3GPP-type channels. To our best knowledge, this paper is the first to perform measurements and analysis at three different frequencies for the evaluation of channel sparsity in the same environment.
Extremely large-scale array (XL-array) communications can significantly improve the spectral efficiency and spatial resolution, and has great potential in next-generation mobile communication networks. A crucial problem in XL-array communications is to determine the boundary of applicable regions of the plane wave model (PWM) and spherical wave model (SWM). In this paper, we propose new PWM/SWM demarcations for XL-arrays from the viewpoint of channel gain and rank. Four sets of results are derived for four different array setups. First, an equi-power line is derived for a point-to-uniform linear array (ULA) scenario, where an inflection point is found at $\pm \frac{\pi}{6}$ central incident angles. Second, an equi-power surface is derived for a point-to-uniform planar array (UPA) scenario, and it is proved that $\cos^2(\phi) \cos^2(\varphi)=\frac{1}{2}$ is a dividing curve, where $\phi$ and $\varphi$ denote the elevation and azimuth angles, respectively. Third, an accurate and explicit expression of the equi-rank surface is obtained for a ULA-to-ULA scenario. Finally, an approximated expression of the equi-rank surface is obtained for a ULA-to-UPA scenario. With the obtained closed-form expressions, the equi-rank surface for any antenna structure and any angle can be well estimated. Furthermore, the effect of scatterers is also investigated, from which some insights are drawn.
In this paper, we consider a cooperative communication network where multiple satellites provide services for ground users (GUs) (at the same time and on the same frequency). The communication and computational resources on satellites are usually restricted and the satellite-GU link determination affects the communication performance significantly when multiple satellites provide services for multiple GUs in a collaborative manner. Therefore, considering the limitation of the on-board radio-frequency chains, we first propose a hybrid beamforming method consisting of analog beamforming for beam alignment and digital beamforming for interference mitigation. Then, to establish appropriate connections between satellites and GUs, we propose a heuristic user scheduling algorithm which determines the connections according to the total spectral efficiency (SE) increment of the multi-satellite cooperative network. Next, a joint hybrid beamforming and user scheduling scheme is proposed to dramatically improve the performance of the multi-satellite cooperative network. Moreover, simulations are conducted to compare the proposed schemes with representative baselines and analyze the key factors influencing the performance of the multi-satellite cooperative network. It is shown that the proposed joint beamforming and user scheduling approach can provide 47.2% SE improvement on average as compared with its non-joint counterpart.
As a prospective key technology for the next-generation wireless communications, reconfigurable intelligent surfaces (RISs) have gained tremendous research interest in both the academia and industry in recent years. Only limited knowledge, however, has been obtained about the channel eigenvalue characteristics and spatial degrees of freedom (DoF) of systems containing RISs, especially when mutual coupling (MC) is present between the array elements. In this paper, we focus on the small-scale spatial correlation and eigenvalue properties excluding and including MC effects, for RISs with a quasi-continuous aperture (i.e., holographic RISs). Specifically, asymptotic behaviors of far-field and near-field eigenvalues of the spatial correlation matrix of holographic RISs without MC are first investigated, where the counter-intuitive observation of a lower DoF with more elements is explained by leveraging the power spectrum of the spatial correlation function. Second, a novel metric is proposed to quantify the inter-element correlation or coupling strength in RISs and ordinary antenna arrays. Furthermore, in-depth analysis is performed regarding the MC effects on array gain, effective spatial correlation, and eigenvalue architectures for a variety of element intervals when a holographic RIS works in the radiation and reception mode, respectively. The analysis and numerical results demonstrate that a considerable amount of the eigenvalues of the spatial correlation matrix correspond to evanescent waves that are promising for near-field communication and sensing. More importantly, holographic RISs can potentially reach an array gain conspicuously larger than conventional arrays by exploiting MC, and MC has discrepant impacts on the effective spatial correlation and eigenvalue structures at the transmitter and receiver.
Integrated ultra-massive multiple-input multiple-output (UM-MIMO) and intelligent reflecting surface (IRS) systems are promising for 6G and beyond Terahertz (0.1-10 THz) communications, to effectively bypass the barriers of limited coverage and line-of-sight blockage. However, excessive dimensions of UM-MIMO and IRS enlarge the near-field region, while strong THz channel sparsity in far-field is detrimental to spatial multiplexing. Moreover, channel estimation (CE) requires recovering the large-scale channel from severely compressed observations due to limited RF-chains. To tackle these challenges, a hybrid spherical- and planar-wave channel model (HSPM) is developed for the cascaded channel of the integrated system. The spatial multiplexing gains under near-field and far-field regions are analyzed, which are found to be limited by the segmented channel with a lower rank. Furthermore, a compressive sensing-based CE framework is developed, including a sparse channel representation method, a separate-side estimation (SSE) and a dictionary-shrinkage estimation (DSE) algorithms. Numerical results verify the effectiveness of the HSPM, the capacity of which is only $5\times10^{-4}$ bits/s/Hz deviated from that obtained by the ground-truth spherical-wave-model, with 256 elements. While the SSE achieves improved accuracy for CE than benchmark algorithms, the DSE is more attractive in noisy environments, with 0.8 dB lower normalized-mean-square-error than SSE.