Abstract:We consider image transmission via deep joint source-channel coding (DeepJSCC) over multi-hop additive white Gaussian noise (AWGN) channels by training a DeepJSCC encoder-decoder pair with a pre-trained deep hash distillation (DHD) module to semantically cluster images, facilitating security-oriented applications through enhanced semantic consistency and improving the perceptual reconstruction quality. We train the DeepJSCC module to both reduce mean square error (MSE) and minimize cosine distance between DHD hashes of source and reconstructed images. Significantly improved perceptual quality as a result of semantic alignment is illustrated for different multi-hop settings, for which classical DeepJSCC may suffer from noise accumulation, measured by the learned perceptual image patch similarity (LPIPS) metric.
Abstract:Joint source-channel coding is a compelling paradigm when low-latency and low-complexity communication is required. This work proposes a theoretical framework that integrates classification and anomaly detection within the conventional signal reconstruction objective. Assuming a Gaussian scalar source and constraining the encoder to piecewise linear mappings, we derive tractable design rules and explicitly characterize the trade-offs between distortion, classification error, and transmission power.
Abstract:Uniform-reward reinforcement learning from human feedback (RLHF), which trains a single reward model to represent the preferences of all annotators, fails to capture the diversity of opinions across sub-populations, inadvertently favoring dominant groups. The state-of-the-art, MaxMin-RLHF, addresses this by learning group-specific reward models, and by optimizing for the group receiving the minimum reward, thereby promoting fairness. However, we identify that a key limitation of MaxMin-RLHF is its poor performance when the minimum-reward group is a minority. To mitigate this drawback, we introduce a novel framework, termed {\em SharedRep-RLHF}. At its core, SharedRep-RLHF learns and leverages {\em shared traits} in annotations among various groups, in contrast to learning separate reward models across groups. We first show that MaxMin-RLHF is provably suboptimal in learning shared traits, and then quantify the sample complexity of SharedRep-RLHF. Experiments across diverse natural language tasks showcase the effectiveness of SharedRep-RLHF compared to MaxMin-RLHF with a gain of up to 20% in win rate.
Abstract:We introduce and validate the lottery codec hypothesis, which states that untrained subnetworks within randomly initialized networks can serve as synthesis networks for overfitted image compression, achieving rate-distortion (RD) performance comparable to trained networks. This hypothesis leads to a new paradigm for image compression by encoding image statistics into the network substructure. Building on this hypothesis, we propose LotteryCodec, which overfits a binary mask to an individual image, leveraging an over-parameterized and randomly initialized network shared by the encoder and the decoder. To address over-parameterization challenges and streamline subnetwork search, we develop a rewind modulation mechanism that improves the RD performance. LotteryCodec outperforms VTM and sets a new state-of-the-art in single-image compression. LotteryCodec also enables adaptive decoding complexity through adjustable mask ratios, offering flexible compression solutions for diverse device constraints and application requirements.
Abstract:Token communications (TokCom) is an emerging generative semantic communication concept that reduces transmission rates by using context and multimodal large language model (MLLM)-based token processing, with tokens serving as universal semantic units across modalities. In this paper, we propose a semantic multiple access scheme in the token domain, referred to as token domain multiple access (ToDMA), where a large number of devices share a token codebook and a modulation codebook for source and channel coding, respectively. Specifically, each transmitter first tokenizes its source signal and modulate each token to a codeword. At the receiver, compressed sensing is employed first to detect active tokens and the corresponding channel state information (CSI) from the superposed signals. Then, the source token sequences are reconstructed by clustering the token-associated CSI across multiple time slots. In case of token collisions, some active tokens cannot be assigned and some positions in the reconstructed token sequences are empty. We propose to use pre-trained MLLMs to leverage the context, predict masked tokens, and thus mitigate token collisions. Simulation results demonstrate the effectiveness of the proposed ToDMA framework for both text and image transmission tasks, achieving significantly lower latency compared to context-unaware orthogonal communication schemes, while also delivering superior distortion and perceptual quality compared to state-of-the-art context-unaware non-orthogonal communication methods.
Abstract:By leveraging the waveform superposition property of the multiple access channel, over-the-air computation (AirComp) enables the execution of digital computations through analog means in the wireless domain, leading to faster processing and reduced latency. In this paper, we propose a novel approach to implement a neural network (NN) consisting of digital fully connected (FC) layers using physically reconfigurable hardware. Specifically, we investigate reconfigurable intelligent surfaces (RISs)-assisted multiple-input multiple-output (MIMO) systems to emulate the functionality of a NN for over-the-air inference. In this setup, both the RIS and the transceiver are jointly configured to manipulate the ambient wireless propagation environment, effectively reproducing the adjustable weights of a digital FC layer. We refer to this new computational paradigm as \textit{AirFC}. We formulate an imitation error minimization problem between the effective channel created by RIS and a target FC layer by jointly optimizing over-the-air parameters. To solve this non-convex optimization problem, an extremely low-complexity alternating optimization algorithm is proposed, where semi-closed-form/closed-form solutions for all optimization variables are derived. Simulation results show that the RIS-assisted MIMO-based AirFC can achieve competitive classification accuracy. Furthermore, it is also shown that a multi-RIS configuration significantly outperforms a single-RIS setup, particularly in line-of-sight (LoS)-dominated channels.
Abstract:Speculative decoding accelerates large language model inference using a smaller draft model. In this paper, we establish a surprising connection between speculative decoding and channel simulation, which aims at simulating a noisy channel using as few bits as possible. This connection allows us to provide an information-theoretic analysis of the speed up that can be achieved by speculative decoding. Leveraging this link, we derive an explicit relation between generation speed-up and the number of tokens $k$ generated by the draft model for large $k$, which serves as an upper bound for all $k$. We also propose a novel speculative decoding method via exponential race ERSD that matches state-of-the-art performance.
Abstract:We investigate fully asynchronous unsourced random access (URA), and propose a high-performing scheme that employs on-off division multiple access (ODMA). In this scheme, active users distribute their data over the transmit block based on a sparse transmission pattern without any limitations on the starting time. At the receiver side, we adopt a double sliding-window decoding approach, utilizing a smaller inner decoding window of two block lengths within a larger outer window to enhance the interference cancellation process. Within the inner window, the receiver iteratively applies preamble-free joint starting time and pattern detection, single-user decoding, and successive interference cancellation operations. A notable feature of the proposed scheme is its elimination of the need for a preamble for starting time detection; this is achieved using ODMA transmission patterns. Numerical results demonstrate that the proposed asynchronous URA scheme outperforms existing alternatives.
Abstract:Joint source-channel coding systems based on deep neural networks (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission. Existing methods primarily focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality. This can lead to severe perceptual degradation when transmitting images under extreme conditions, such as low bandwidth compression ratios (BCRs) and low signal-to-noise ratios (SNRs). In this work, we propose SING, a novel two-stage JSCC framework that formulates the recovery of high-quality source images from corrupted reconstructions as an inverse problem. Depending on the availability of information about the DeepJSCC encoder/decoder and the channel at the receiver, SING can either approximate the stochastic degradation as a linear transformation, or leverage invertible neural networks (INNs) for precise modeling. Both approaches enable the seamless integration of diffusion models into the reconstruction process, enhancing perceptual quality. Experimental results demonstrate that SING outperforms DeepJSCC and other approaches, delivering superior perceptual quality even under extremely challenging conditions, including scenarios with significant distribution mismatches between the training and test data.
Abstract:Most existing semantic communication (SemCom) systems use deep joint source-channel coding (DeepJSCC) to encode task-specific semantics in a goal-oriented manner. However, their reliance on predefined tasks and datasets significantly limits their flexibility and generalizability in practical deployments. Multi-modal foundation models provide a promising solution by generating universal semantic tokens. Inspired by this, we introduce SemCLIP, a task-agnostic SemCom framework leveraging the contrastive language-image pre-training (CLIP) model. By transmitting CLIP-generated image tokens instead of raw images, SemCLIP enables efficient semantic communications under low bandwidth and challenging channel conditions, facilitating diverse downstream tasks and zero-shot applications. Specifically, we propose a DeepJSCC scheme for efficient CLIP tokens encoding. To mitigate potential degradation caused by compression and channel noise, a multi-modal transmission-aware prompt learning mechanism is designed at the receiver, which adapts prompts based on transmission quality, enhancing system robustness and channel adaptability. Simulation results demonstrate that SemCLIP outperforms the baselines, achieving a $41\%$ improvement in zero-shot accuracy at a low signal-to-noise ratio. Meanwhile, SemCLIP reduces bandwidth usage by more than $50$-fold compared to different image transmission methods, demonstrating the potential of foundation models towards a generalized, task-agnostic SemCom solution.