Abstract:Understanding how large language model (LLM) agents behave in strategic interactions is essential as these systems increasingly participate autonomously in economically and morally consequential decisions. We evaluate LLM preferences using canonical economic games, finding substantial deviations from human behavior. Models like GPT-4o show excessive cooperation and limited incentive sensitivity, while reasoning models, such as o3-mini, align more consistently with payoff-maximizing strategies. We propose a supervised fine-tuning pipeline that uses synthetic datasets derived from economic reasoning to align LLM agents with economic preferences, focusing on two stylized preference structures. In the first, utility depends only on individual payoffs (homo economicus), while utility also depends on a notion of Kantian universalizability in the second preference structure (homo moralis). We find that fine-tuning based on small datasets shifts LLM agent behavior toward the corresponding economic agent. We further assess the fine-tuned agents' behavior in two applications: Moral dilemmas involving autonomous vehicles and algorithmic pricing in competitive markets. These examples illustrate how different normative objectives embedded via realizations from structured preference structures can influence market and moral outcomes. This work contributes a replicable, cost-efficient, and economically grounded pipeline to align AI preferences using moral-economic principles.
Abstract:This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. We introduce two new stacking approaches for DDML: short-stacking exploits the cross-fitting step of DDML to substantially reduce the computational burden and pooled stacking enforces common stacking weights over cross-fitting folds. Using calibrated simulation studies and two applications estimating gender gaps in citations and wages, we show that DDML with stacking is more robust to partially unknown functional forms than common alternative approaches based on single pre-selected learners. We provide Stata and R software implementing our proposals.
Abstract:We introduce the package ddml for Double/Debiased Machine Learning (DDML) in Stata. Estimators of causal parameters for five different econometric models are supported, allowing for flexible estimation of causal effects of endogenous variables in settings with unknown functional forms and/or many exogenous variables. ddml is compatible with many existing supervised machine learning programs in Stata. We recommend using DDML in combination with stacking estimation which combines multiple machine learners into a final predictor. We provide Monte Carlo evidence to support our recommendation.
Abstract:pystacked implements stacked generalization (Wolpert, 1992) for regression and binary classification via Python's scikit-lear}. Stacking combines multiple supervised machine learners -- the "base" or "level-0" learners -- into a single learner. The currently supported base learners include regularized regression, random forest, gradient boosted trees, support vector machines, and feed-forward neural nets (multi-layer perceptron). pystacked can also be used with as a `regular' machine learning program to fit a single base learner and, thus, provides an easy-to-use API for scikit-learn's machine learning algorithms.