Abstract:Time consumption and the complexity of manual layout design make automated layout generation a critical task, especially for multiple applications across different mobile devices. Existing graph-based layout generation approaches suffer from limited generative capability, often resulting in unreasonable and incompatible outputs. Meanwhile, vision based generative models tend to overlook the original structural information, leading to component intersections and overlaps. To address these challenges, we propose an Aggregation Structural Representation (ASR) module that integrates graph networks with large language models (LLMs) to preserve structural information while enhancing generative capability. This novel pipeline utilizes graph features as hierarchical prior knowledge, replacing the traditional Vision Transformer (ViT) module in multimodal large language models (MLLM) to predict full layout information for the first time. Moreover, the intermediate graph matrix used as input for the LLM is human editable, enabling progressive, human centric design generation. A comprehensive evaluation on the RICO dataset demonstrates the strong performance of ASR, both quantitatively using mean Intersection over Union (mIoU), and qualitatively through a crowdsourced user study. Additionally, sampling on relational features ensures diverse layout generation, further enhancing the adaptability and creativity of the proposed approach.
Abstract:Graphical user interface (GUI) has become integral to modern society, making it crucial to be understood for human-centric systems. However, unlike natural images or documents, GUIs comprise artificially designed graphical elements arranged to convey specific semantic meanings. Current multi-modal large language models (MLLMs) already proficient in processing graphical and textual components suffer from hurdles in GUI understanding due to the lack of explicit spatial structure modeling. Moreover, obtaining high-quality spatial structure data is challenging due to privacy issues and noisy environments. To address these challenges, we present MP-GUI, a specially designed MLLM for GUI understanding. MP-GUI features three precisely specialized perceivers to extract graphical, textual, and spatial modalities from the screen as GUI-tailored visual clues, with spatial structure refinement strategy and adaptively combined via a fusion gate to meet the specific preferences of different GUI understanding tasks. To cope with the scarcity of training data, we also introduce a pipeline for automatically data collecting. Extensive experiments demonstrate that MP-GUI achieves impressive results on various GUI understanding tasks with limited data.