



Abstract:Collaborative learning of large language models (LLMs) has emerged as a new paradigm for utilizing private data from different parties to guarantee efficiency and privacy. Meanwhile, Knowledge Editing (KE) for LLMs has also garnered increased attention due to its ability to manipulate the behaviors of LLMs explicitly, yet leaves the collaborative KE case (in which knowledge edits of multiple parties are aggregated in a privacy-preserving and continual manner) unexamined. To this end, this manuscript dives into the first investigation of collaborative KE, in which we start by carefully identifying the unique three challenges therein, including knowledge overlap, knowledge conflict, and knowledge forgetting. We then propose a non-destructive collaborative KE framework, COLLABEDIT, which employs a novel model merging mechanism to mimic the global KE behavior while preventing the severe performance drop. Extensive experiments on two canonical datasets demonstrate the superiority of COLLABEDIT compared to other destructive baselines, and results shed light on addressing three collaborative KE challenges and future applications.




Abstract:The salient multimodal capabilities and interactive experience of GPT-4o highlight its critical role in practical applications, yet it lacks a high-performing open-source counterpart. In this paper, we introduce Baichuan-Omni, the first open-source 7B Multimodal Large Language Model (MLLM) adept at concurrently processing and analyzing modalities of image, video, audio, and text, while delivering an advanced multimodal interactive experience and strong performance. We propose an effective multimodal training schema starting with 7B model and proceeding through two stages of multimodal alignment and multitask fine-tuning across audio, image, video, and text modal. This approach equips the language model with the ability to handle visual and audio data effectively. Demonstrating strong performance across various omni-modal and multimodal benchmarks, we aim for this contribution to serve as a competitive baseline for the open-source community in advancing multimodal understanding and real-time interaction.
Abstract:Classical information design models (e.g., Bayesian persuasion and cheap talk) require players to have perfect knowledge of the prior distribution of the state of the world. Our paper studies repeated persuasion problems in which the information designer does not know the prior. The information designer learns to design signaling schemes from repeated interactions with the receiver. We design learning algorithms for the information designer to achieve no regret compared to using the optimal signaling scheme with known prior, under two models of the receiver's decision-making. (1) The first model assumes that the receiver knows the prior and can perform posterior update and best respond to signals. In this model, we design a learning algorithm for the information designer with $O(\log T)$ regret in the general case, and another algorithm with $\Theta(\log \log T)$ regret in the case where the receiver has only two actions. (2) The second model assumes that the receiver does not know the prior and employs a no-regret learning algorithm to take actions. We show that the information designer can achieve regret $O(\sqrt{\mathrm{rReg}(T) T})$, where $\mathrm{rReg}(T)=o(T)$ is an upper bound on the receiver's learning regret. Our work thus provides a learning foundation for the problem of information design with unknown prior.




Abstract:Recommender systems present relevant contents to users and help content creators reach their target audience. The dual nature of these systems influences both users and creators: users' preferences are affected by the items they are recommended, while creators are incentivized to alter their contents such that it is recommended more frequently. We define a model, called user-creator feature dynamics, to capture the dual influences of recommender systems. We prove that a recommender system with dual influence is guaranteed to polarize, causing diversity loss in the system. We then investigate, both theoretically and empirically, approaches for mitigating polarization and promoting diversity in recommender systems. Unexpectedly, we find that common diversity-promoting approaches do not work in the presence of dual influence, while relevancy-optimizing methods like top-$k$ recommendation can prevent polarization and improve diversity of the system.
Abstract:With the rapid development of artificial intelligence (AI), large language models (LLMs) such as GPT-4 have garnered significant attention in the scientific community, demonstrating great potential in advancing scientific discovery. This progress raises a critical question: are these LLMs well-aligned with real-world physicochemical principles? Current evaluation strategies largely emphasize fact-based knowledge, such as material property prediction or name recognition, but they often lack an understanding of fundamental physicochemical mechanisms that require logical reasoning. To bridge this gap, our study developed a benchmark consisting of 775 multiple-choice questions focusing on the mechanisms of gold nanoparticle synthesis. By reflecting on existing evaluation metrics, we question whether a direct true-or-false assessment merely suggests conjecture. Hence, we propose a novel evaluation metric, the confidence-based score (c-score), which probes the output logits to derive the precise probability for the correct answer. Based on extensive experiments, our results show that in the context of gold nanoparticle synthesis, LLMs understand the underlying physicochemical mechanisms rather than relying on conjecture. This study underscores the potential of LLMs to grasp intrinsic scientific mechanisms and sets the stage for developing more reliable and effective AI tools across various scientific domains.




Abstract:Fine-tuning large pre-trained foundation models, such as the 175B GPT-3, has attracted more attention for downstream tasks recently. While parameter-efficient fine-tuning methods have been proposed and proven effective without retraining all model parameters, their performance is limited by the capacity of incremental modules, especially under constrained parameter budgets. \\ To overcome this challenge, we propose CapaBoost, a simple yet effective strategy that enhances model capacity by leveraging low-rank updates through parallel weight modules in target layers. By applying static random masks to the shared weight matrix, CapaBoost constructs a diverse set of weight matrices, effectively increasing the rank of incremental weights without adding parameters. Notably, our approach can be seamlessly integrated into various existing parameter-efficient fine-tuning methods. We extensively validate the efficacy of CapaBoost through experiments on diverse downstream tasks, including natural language understanding, question answering, and image classification. Our results demonstrate significant improvements over baselines, without incurring additional computation or storage costs. Our code is available at \url{https://github.com/LINs-lab/CapaBoost}.




Abstract:Vision Language Models (VLMs) like CLIP have attracted substantial attention in pathology, serving as backbones for applications such as zero-shot image classification and Whole Slide Image (WSI) analysis. Additionally, they can function as vision encoders when combined with large language models (LLMs) to support broader capabilities. Current efforts to train pathology VLMs rely on pathology image-text pairs from platforms like PubMed, YouTube, and Twitter, which provide limited, unscalable data with generally suboptimal image quality. In this work, we leverage large-scale WSI datasets like TCGA to extract numerous high-quality image patches. We then train a large multimodal model to generate captions for these images, creating PathGen-1.6M, a dataset containing 1.6 million high-quality image-caption pairs. Our approach involves multiple agent models collaborating to extract representative WSI patches, generating and refining captions to obtain high-quality image-text pairs. Extensive experiments show that integrating these generated pairs with existing datasets to train a pathology-specific CLIP model, PathGen-CLIP, significantly enhances its ability to analyze pathological images, with substantial improvements across nine pathology-related zero-shot image classification tasks and three whole-slide image tasks. Furthermore, we construct 200K instruction-tuning data based on PathGen-1.6M and integrate PathGen-CLIP with the Vicuna LLM to create more powerful multimodal models through instruction tuning. Overall, we provide a scalable pathway for high-quality data generation in pathology, paving the way for next-generation general pathology models.
Abstract:Cognitive abilities, such as Theory of Mind (ToM), play a vital role in facilitating cooperation in human social interactions. However, our study reveals that agents with higher ToM abilities may not necessarily exhibit better cooperative behavior compared to those with lower ToM abilities. To address this challenge, we propose a novel matching coalition mechanism that leverages the strengths of agents with different ToM levels by explicitly considering belief alignment and specialized abilities when forming coalitions. Our proposed matching algorithm seeks to find stable coalitions that maximize the potential for cooperative behavior and ensure long-term viability. By incorporating cognitive insights into the design of multi-agent systems, our work demonstrates the potential of leveraging ToM to create more sophisticated and human-like coordination strategies that foster cooperation and improve overall system performance.
Abstract:Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm. Nonetheless, the substantial distribution shifts among clients pose a considerable challenge to the performance of current FL algorithms. To mitigate this challenge, various methods have been proposed to enhance the FL training process. This paper endeavors to tackle the issue of data heterogeneity from another perspective -- by improving FL algorithms prior to the actual training stage. Specifically, we introduce the Client2Vec mechanism, which generates a unique client index for each client before the commencement of FL training. Subsequently, we leverage the generated client index to enhance the subsequent FL training process. To demonstrate the effectiveness of the proposed Client2Vec method, we conduct three case studies that assess the impact of the client index on the FL training process. These case studies encompass enhanced client sampling, model aggregation, and local training. Extensive experiments conducted on diverse datasets and model architectures show the efficacy of Client2Vec across all three case studies. Our code is avaliable at \url{https://github.com/LINs-lab/client2vec}.
Abstract:Recent advancements in dataset distillation have demonstrated the significant benefits of employing soft labels generated by pre-trained teacher models. In this paper, we introduce a novel perspective by emphasizing the full utilization of labels. We first conduct a comprehensive comparison of various loss functions for soft label utilization in dataset distillation, revealing that the model trained on the synthetic dataset exhibits high sensitivity to the choice of loss function for soft label utilization. This finding highlights the necessity of a universal loss function for training models on synthetic datasets. Building on these insights, we introduce an extremely simple yet surprisingly effective plug-and-play approach, GIFT, which encompasses soft label refinement and a cosine similarity-based loss function to efficiently leverage full label information. Extensive experiments demonstrate that GIFT consistently enhances the state-of-the-art dataset distillation methods across various scales datasets without incurring additional computational costs. For instance, on ImageNet-1K with IPC = 10, GIFT improves the SOTA method RDED by 3.9% and 1.8% on ConvNet and ResNet-18, respectively. Code: https://github.com/LINs-lab/GIFT.