Linda
Abstract:Existing truth inference methods in crowdsourcing aim to map redundant labels and items to the ground truth. They treat the ground truth as hidden variables and use statistical or deep learning-based worker behavior models to infer the ground truth. However, worker behavior models that rely on ground truth hidden variables overlook workers' behavior at the item feature level, leading to imprecise characterizations and negatively impacting the quality of truth inference. This paper proposes a new paradigm of multi-task supervised learning from crowds, which eliminates the need for modeling of items's ground truth in worker behavior models. Within this paradigm, we propose a worker behavior model at the item feature level called Mixture of Experts based Multi-task Supervised Learning from Crowds (MMLC). Two truth inference strategies are proposed within MMLC. The first strategy, named MMLC-owf, utilizes clustering methods in the worker spectral space to identify the projection vector of the oracle worker. Subsequently, the labels generated based on this vector are considered as the inferred truth. The second strategy, called MMLC-df, employs the MMLC model to fill the crowdsourced data, which can enhance the effectiveness of existing truth inference methods. Experimental results demonstrate that MMLC-owf outperforms state-of-the-art methods and MMLC-df enhances the quality of existing truth inference methods.
Abstract:Recent works have shown promising results in connecting speech encoders to large language models (LLMs) for speech recognition. However, several limitations persist, including limited fine-tuning options, a lack of mechanisms to enforce speech-text alignment, and high insertion errors especially in domain mismatch conditions. This paper presents a comprehensive solution to address these issues. We begin by investigating more thoughtful fine-tuning schemes. Next, we propose a matching loss to enhance alignment between modalities. Finally, we explore training and inference methods to mitigate high insertion errors. Experimental results on the Librispeech corpus demonstrate that partially fine-tuning the encoder and LLM using parameter-efficient methods, such as LoRA, is the most cost-effective approach. Additionally, the matching loss improves modality alignment, enhancing performance. The proposed training and inference methods significantly reduce insertion errors.
Abstract:Global Station Weather Forecasting (GSWF) is crucial for various sectors, including aviation, agriculture, energy, and disaster preparedness. Recent advancements in deep learning have significantly improved the accuracy of weather predictions by optimizing models based on public meteorological data. However, existing public datasets for GSWF optimization and benchmarking still suffer from significant limitations, such as small sizes, limited temporal coverage, and a lack of comprehensive variables. These shortcomings prevent them from effectively reflecting the benchmarks of current forecasting methods and fail to support the real needs of operational weather forecasting. To address these challenges, we present the WEATHER-5K dataset. This dataset comprises a comprehensive collection of data from 5,672 weather stations worldwide, spanning a 10-year period with one-hour intervals. It includes multiple crucial weather elements, providing a more reliable and interpretable resource for forecasting. Furthermore, our WEATHER-5K dataset can serve as a benchmark for comprehensively evaluating existing well-known forecasting models, extending beyond GSWF methods to support future time-series research challenges and opportunities. The dataset and benchmark implementation are publicly available at: https://github.com/taohan10200/WEATHER-5K.
Abstract:Data assimilation is a vital component in modern global medium-range weather forecasting systems to obtain the best estimation of the atmospheric state by combining the short-term forecast and observations. Recently, AI-based data assimilation approaches have attracted increasing attention for their significant advantages over traditional techniques in terms of computational consumption. However, existing AI-based data assimilation methods can only handle observations with a specific resolution, lacking the compatibility and generalization ability to assimilate observations with other resolutions. Considering that complex real-world observations often have different resolutions, we propose the \textit{\textbf{Fourier Neural Processes}} (FNP) for \textit{arbitrary-resolution data assimilation} in this paper. Leveraging the efficiency of the designed modules and flexible structure of neural processes, FNP achieves state-of-the-art results in assimilating observations with varying resolutions, and also exhibits increasing advantages over the counterparts as the resolution and the amount of observations increase. Moreover, our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning, demonstrating its excellent generalization ability across data resolutions as well as across tasks.
Abstract:Data-driven artificial intelligence (AI) models have made significant advancements in weather forecasting, particularly in medium-range and nowcasting. However, most data-driven weather forecasting models are black-box systems that focus on learning data mapping rather than fine-grained physical evolution in the time dimension. Consequently, the limitations in the temporal scale of datasets prevent these models from forecasting at finer time scales. This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales beyond training dataset. Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale (e.g., 300 seconds) and use a parallel neural networks with a learnable router for bias correction. Furthermore, we introduce a lead time-aware training framework to promote the generalization of the model at different lead times. The weight analysis of physics-AI modules indicates that physics conducts major evolution while AI performs corrections adaptively. Extensive experiments show that WeatherGFT trained on an hourly dataset, achieves state-of-the-art performance across multiple lead times and exhibits the capability to generalize 30-minute forecasts.
Abstract:The advent of data-driven weather forecasting models, which learn from hundreds of terabytes (TB) of reanalysis data, has significantly advanced forecasting capabilities. However, the substantial costs associated with data storage and transmission present a major challenge for data providers and users, affecting resource-constrained researchers and limiting their accessibility to participate in AI-based meteorological research. To mitigate this issue, we introduce an efficient neural codec, the Variational Autoencoder Transformer (VAEformer), for extreme compression of climate data to significantly reduce data storage cost, making AI-based meteorological research portable to researchers. Our approach diverges from recent complex neural codecs by utilizing a low-complexity Auto-Encoder transformer. This encoder produces a quantized latent representation through variance inference, which reparameterizes the latent space as a Gaussian distribution. This method improves the estimation of distributions for cross-entropy coding. Extensive experiments demonstrate that our VAEformer outperforms existing state-of-the-art compression methods in the context of climate data. By applying our VAEformer, we compressed the most popular ERA5 climate dataset (226 TB) into a new dataset, CRA5 (0.7 TB). This translates to a compression ratio of over 300 while retaining the dataset's utility for accurate scientific analysis. Further, downstream experiments show that global weather forecasting models trained on the compact CRA5 dataset achieve forecasting accuracy comparable to the model trained on the original dataset. Code, the CRA5 dataset, and the pre-trained model are available at https://github.com/taohan10200/CRA5.
Abstract:Understanding how the structure of materials affects their properties is a cornerstone of materials science and engineering. However, traditional methods have struggled to accurately describe the quantitative structure-property relationships for complex structures. In our study, we bridge this gap by leveraging machine learning to analyze images of materials' microstructures, thus offering a novel way to understand and predict the properties of materials based on their microstructures. We introduce a method known as FAGC (Feature Augmentation on Geodesic Curves), specifically demonstrated for Cu-Cr-Zr alloys. This approach utilizes machine learning to examine the shapes within images of the alloys' microstructures and predict their mechanical and electronic properties. This generative FAGC approach can effectively expand the relatively small training datasets due to the limited availability of materials images labeled with quantitative properties. The process begins with extracting features from the images using neural networks. These features are then mapped onto the Pre-shape space to construct the Geodesic curves. Along these curves, new features are generated, effectively increasing the dataset. Moreover, we design a pseudo-labeling mechanism for these newly generated features to further enhance the training dataset. Our FAGC method has shown remarkable results, significantly improving the accuracy of predicting the electronic conductivity and hardness of Cu-Cr-Zr alloys, with R-squared values of 0.978 and 0.998, respectively. These outcomes underscore the potential of FAGC to address the challenge of limited image data in materials science, providing a powerful tool for establishing detailed and quantitative relationships between complex microstructures and material properties.
Abstract:Federated learning (FL) has emerged as a powerful paradigm for learning from decentralized data, and federated domain generalization further considers the test dataset (target domain) is absent from the decentralized training data (source domains). However, most existing FL methods assume that domain labels are provided during training, and their evaluation imposes explicit constraints on the number of domains, which must strictly match the number of clients. Because of the underutilization of numerous edge devices and additional cross-client domain annotations in the real world, such restrictions may be impractical and involve potential privacy leaks. In this paper, we propose an efficient and novel approach, called Disentangled Prompt Tuning (DiPrompT), a method that tackles the above restrictions by learning adaptive prompts for domain generalization in a distributed manner. Specifically, we first design two types of prompts, i.e., global prompt to capture general knowledge across all clients and domain prompts to capture domain-specific knowledge. They eliminate the restriction on the one-to-one mapping between source domains and local clients. Furthermore, a dynamic query metric is introduced to automatically search the suitable domain label for each sample, which includes two-substep text-image alignments based on prompt tuning without labor-intensive annotation. Extensive experiments on multiple datasets demonstrate that our DiPrompT achieves superior domain generalization performance over state-of-the-art FL methods when domain labels are not provided, and even outperforms many centralized learning methods using domain labels.
Abstract:Accurate forecasting of Tropical cyclone (TC) intensity is crucial for formulating disaster risk reduction strategies. Current methods predominantly rely on limited spatiotemporal information from ERA5 data and neglect the causal relationships between these physical variables, failing to fully capture the spatial and temporal patterns required for intensity forecasting. To address this issue, we propose a Multi-modal multi-Scale Causal AutoRegressive model (MSCAR), which is the first model that combines causal relationships with large-scale multi-modal data for global TC intensity autoregressive forecasting. Furthermore, given the current absence of a TC dataset that offers a wide range of spatial variables, we present the Satellite and ERA5-based Tropical Cyclone Dataset (SETCD), which stands as the longest and most comprehensive global dataset related to TCs. Experiments on the dataset show that MSCAR outperforms the state-of-the-art methods, achieving maximum reductions in global and regional forecast errors of 9.52% and 6.74%, respectively. The code and dataset are publicly available at https://anonymous.4open.science/r/MSCAR.
Abstract:Data-driven weather forecast based on machine learning (ML) has experienced rapid development and demonstrated superior performance in the global medium-range forecast compared to traditional physics-based dynamical models. However, most of these ML models struggle with accurately predicting extreme weather, which is closely related to the extreme value prediction. Through mathematical analysis, we prove that the use of symmetric losses, such as the Mean Squared Error (MSE), leads to biased predictions and underestimation of extreme values. To address this issue, we introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast. Furthermore, we introduce a training-free extreme value enhancement strategy named ExEnsemble, which increases the variance of pixel values and improves the forecast robustness. Combined with an advanced global weather forecast model, extensive experiments show that our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.