Abstract:Recently, diffusion-based depth estimation methods have drawn widespread attention due to their elegant denoising patterns and promising performance. However, they are typically unreliable under adverse conditions prevalent in real-world scenarios, such as rainy, snowy, etc. In this paper, we propose a novel robust depth estimation method called D4RD, featuring a custom contrastive learning mode tailored for diffusion models to mitigate performance degradation in complex environments. Concretely, we integrate the strength of knowledge distillation into contrastive learning, building the `trinity' contrastive scheme. This scheme utilizes the sampled noise of the forward diffusion process as a natural reference, guiding the predicted noise in diverse scenes toward a more stable and precise optimum. Moreover, we extend noise-level trinity to encompass more generic feature and image levels, establishing a multi-level contrast to distribute the burden of robust perception across the overall network. Before addressing complex scenarios, we enhance the stability of the baseline diffusion model with three straightforward yet effective improvements, which facilitate convergence and remove depth outliers. Extensive experiments demonstrate that D4RD surpasses existing state-of-the-art solutions on synthetic corruption datasets and real-world weather conditions. The code for D4RD will be made available for further exploration and adoption.
Abstract:Self-supervised monocular depth estimation methods have been increasingly given much attention due to the benefit of not requiring large, labelled datasets. Such self-supervised methods require high-quality salient features and consequently suffer from severe performance drop for indoor scenes, where low-textured regions dominant in the scenes are almost indiscriminative. To address the issue, we propose a self-supervised indoor monocular depth estimation framework called $\mathrm{F^2Depth}$. A self-supervised optical flow estimation network is introduced to supervise depth learning. To improve optical flow estimation performance in low-textured areas, only some patches of points with more discriminative features are adopted for finetuning based on our well-designed patch-based photometric loss. The finetuned optical flow estimation network generates high-accuracy optical flow as a supervisory signal for depth estimation. Correspondingly, an optical flow consistency loss is designed. Multi-scale feature maps produced by finetuned optical flow estimation network perform warping to compute feature map synthesis loss as another supervisory signal for depth learning. Experimental results on the NYU Depth V2 dataset demonstrate the effectiveness of the framework and our proposed losses. To evaluate the generalization ability of our $\mathrm{F^2Depth}$, we collect a Campus Indoor depth dataset composed of approximately 1500 points selected from 99 images in 18 scenes. Zero-shot generalization experiments on 7-Scenes dataset and Campus Indoor achieve $\delta_1$ accuracy of 75.8% and 76.0% respectively. The accuracy results show that our model can generalize well to monocular images captured in unknown indoor scenes.
Abstract:Over the past few years, monocular depth estimation and completion have been paid more and more attention from the computer vision community because of their widespread applications. In this paper, we introduce novel physics (geometry)-driven deep learning frameworks for these two tasks by assuming that 3D scenes are constituted with piece-wise planes. Instead of directly estimating the depth map or completing the sparse depth map, we propose to estimate the surface normal and plane-to-origin distance maps or complete the sparse surface normal and distance maps as intermediate outputs. To this end, we develop a normal-distance head that outputs pixel-level surface normal and distance. Meanwhile, the surface normal and distance maps are regularized by a developed plane-aware consistency constraint, which are then transformed into depth maps. Furthermore, we integrate an additional depth head to strengthen the robustness of the proposed frameworks. Extensive experiments on the NYU-Depth-v2, KITTI and SUN RGB-D datasets demonstrate that our method exceeds in performance prior state-of-the-art monocular depth estimation and completion competitors. The source code will be available at https://github.com/ShuweiShao/NDDepth.
Abstract:Over the past few years, self-supervised monocular depth estimation that does not depend on ground-truth during the training phase has received widespread attention. Most efforts focus on designing different types of network architectures and loss functions or handling edge cases, e.g., occlusion and dynamic objects. In this work, we introduce a novel self-supervised depth estimation framework, dubbed MonoDiffusion, by formulating it as an iterative denoising process. Because the depth ground-truth is unavailable in the training phase, we develop a pseudo ground-truth diffusion process to assist the diffusion in MonoDiffusion. The pseudo ground-truth diffusion gradually adds noise to the depth map generated by a pre-trained teacher model. Moreover,the teacher model allows applying a distillation loss to guide the denoised depth. Further, we develop a masked visual condition mechanism to enhance the denoising ability of model. Extensive experiments are conducted on the KITTI and Make3D datasets and the proposed MonoDiffusion outperforms prior state-of-the-art competitors. The source code will be available at https://github.com/ShuweiShao/MonoDiffusion.
Abstract:Monocular depth estimation (MDE) is a fundamental topic of geometric computer vision and a core technique for many downstream applications. Recently, several methods reframe the MDE as a classification-regression problem where a linear combination of probabilistic distribution and bin centers is used to predict depth. In this paper, we propose a novel concept of iterative elastic bins (IEBins) for the classification-regression-based MDE. The proposed IEBins aims to search for high-quality depth by progressively optimizing the search range, which involves multiple stages and each stage performs a finer-grained depth search in the target bin on top of its previous stage. To alleviate the possible error accumulation during the iterative process, we utilize a novel elastic target bin to replace the original target bin, the width of which is adjusted elastically based on the depth uncertainty. Furthermore, we develop a dedicated framework composed of a feature extractor and an iterative optimizer that has powerful temporal context modeling capabilities benefiting from the GRU-based architecture. Extensive experiments on the KITTI, NYU-Depth-v2 and SUN RGB-D datasets demonstrate that the proposed method surpasses prior state-of-the-art competitors. The source code is publicly available at https://github.com/ShuweiShao/IEBins.
Abstract:Monocular depth estimation has drawn widespread attention from the vision community due to its broad applications. In this paper, we propose a novel physics (geometry)-driven deep learning framework for monocular depth estimation by assuming that 3D scenes are constituted by piece-wise planes. Particularly, we introduce a new normal-distance head that outputs pixel-level surface normal and plane-to-origin distance for deriving depth at each position. Meanwhile, the normal and distance are regularized by a developed plane-aware consistency constraint. We further integrate an additional depth head to improve the robustness of the proposed framework. To fully exploit the strengths of these two heads, we develop an effective contrastive iterative refinement module that refines depth in a complementary manner according to the depth uncertainty. Extensive experiments indicate that the proposed method exceeds previous state-of-the-art competitors on the NYU-Depth-v2, KITTI and SUN RGB-D datasets. Notably, it ranks 1st among all submissions on the KITTI depth prediction online benchmark at the submission time.
Abstract:Monocular depth estimation is critical for endoscopists to perform spatial perception and 3D navigation of surgical sites. However, most of the existing methods ignore the important geometric structural consistency, which inevitably leads to performance degradation and distortion of 3D reconstruction. To address this issue, we introduce a gradient loss to penalize edge fluctuations ambiguous around stepped edge structures and a normal loss to explicitly express the sensitivity to frequently small structures, and propose a geometric consistency loss to spreads the spatial information across the sample grids to constrain the global geometric anatomy structures. In addition, we develop a synthetic RGB-Depth dataset that captures the anatomical structures under reflections and illumination variations. The proposed method is extensively validated across different datasets and clinical images and achieves mean RMSE values of 0.066 (stomach), 0.029 (small intestine), and 0.139 (colon) on the EndoSLAM dataset. The generalizability of the proposed method achieves mean RMSE values of 12.604 (T1-L1), 9.930 (T2-L2), and 13.893 (T3-L3) on the ColonDepth dataset. The experimental results show that our method exceeds previous state-of-the-art competitors and generates more consistent depth maps and reasonable anatomical structures. The quality of intraoperative 3D structure perception from endoscopic videos of the proposed method meets the accuracy requirements of video-CT registration algorithms for endoscopic navigation. The dataset and the source code will be available at https://github.com/YYM-SIA/LINGMI-MR.
Abstract:Monocular depth estimation plays a fundamental role in computer vision. Due to the costly acquisition of depth ground truth, self-supervised methods that leverage adjacent frames to establish a supervisory signal have emerged as the most promising paradigms. In this work, we propose two novel ideas to improve self-supervised monocular depth estimation: 1) self-reference distillation and 2) disparity offset refinement. Specifically, we use a parameter-optimized model as the teacher updated as the training epochs to provide additional supervision during the training process. The teacher model has the same structure as the student model, with weights inherited from the historical student model. In addition, a multiview check is introduced to filter out the outliers produced by the teacher model. Furthermore, we leverage the contextual consistency between high-scale and low-scale features to obtain multiscale disparity offsets, which are used to refine the disparity output incrementally by aligning disparity information at different scales. The experimental results on the KITTI and Make3D datasets show that our method outperforms previous state-of-the-art competitors.
Abstract:This work aims to estimate a high-quality depth map from a single RGB image. Due to the lack of depth clues, making full use of the long-range correlation and the local information is critical for accurate depth estimation. Towards this end, we introduce an uncertainty rectified cross-distillation between Transformer and convolutional neural network (CNN) to learn a unified depth estimator. Specifically, we use the depth estimates from the Transformer branch and the CNN branch as pseudo labels to teach each other. Meanwhile, we model the pixel-wise depth uncertainty to rectify the loss weights of noisy pseudo labels. To avoid the large capacity gap induced by the strong Transformer branch deteriorating the cross-distillation, we transfer the feature maps from Transformer to CNN and design coupling units to assist the weak CNN branch to leverage the transferred features. Furthermore, we propose a surprisingly simple yet highly effective data augmentation technique CutFlip, which enforces the model to exploit more valuable clues apart from the vertical image position for depth inference. Extensive experiments demonstrate that our model, termed~\textbf{URCDC-Depth}, exceeds previous state-of-the-art methods on the KITTI, NYU-Depth-v2 and SUN RGB-D datasets, even with no additional computational burden at inference time. The source code is publicly available at \url{https://github.com/ShuweiShao/URCDC-Depth}.
Abstract:Unsupervised monocular trained depth estimation models make use of adjacent frames as a supervisory signal during the training phase. However, temporally correlated frames are also available at inference time for many clinical applications, e.g., surgical navigation. The vast majority of monocular systems do not exploit this valuable signal that could be deployed to enhance the depth estimates. Those that do, achieve only limited gains due to the unique challenges in endoscopic scenes, such as low and homogeneous textures and inter-frame brightness fluctuations. In this work, we present SMUDLP, a novel and unsupervised paradigm for multi-frame monocular endoscopic depth estimation. The SMUDLP integrates a learnable patchmatch module to adaptively increase the discriminative ability in low-texture and homogeneous-texture regions, and enforces cross-teaching and self-teaching consistencies to provide efficacious regularizations towards brightness fluctuations. Our detailed experiments on both SCARED and Hamlyn datasets indicate that the SMUDLP exceeds state-of-the-art competitors by a large margin, including those that use single or multiple frames at inference time. The source code and trained models will be publicly available upon the acceptance.