Abstract:Intelligent reflecting surfaces (IRSs) have been regarded as a promising enabler for future wireless communication systems. In the literature, IRSs have been considered power-free or assumed to have constant power consumption. However, recent experimental results have shown that for positive-intrinsic-negative (PIN) diode-based IRSs, the power consumption dynamically changes with the phase shift configuration. This phase shift-dependent power consumption (PS-DPC) introduces a challenging power allocation problem between base station (BS) and IRS. To tackle this issue, in this paper, we investigate a rate maximization problem for IRS-assisted systems under a practical PS-DPC model. For the single-user case, we propose a generalized Benders decomposition-based beamforming method to maximize the achievable rate while satisfying a total system power consumption constraint. Moreover, we propose a low-complexity beamforming design, where the powers allocated to BS and IRS are optimized offline based on statistical channel state information. Furthermore, for the multi-user case, we solve an equivalent weighted mean square error minimization problem with two different joint power allocation and phase shift optimization methods. Simulation results indicate that compared to baseline schemes, our proposed methods can flexibly optimize the power allocation between BS and IRS, thus achieving better performance. The optimized power allocation strategy strongly depends on the system power budget. When the system power budget is high, the PS-DPC is not the dominant factor in the system power consumption, allowing the IRS to turn on as many PIN diodes as needed to achieve high beamforming quality. When the system power budget is limited, however, more power tends to be allocated to the BS to enhance the transmit power, resulting in a lower beamforming quality at the IRS due to the reduced PS-DPC budget.
Abstract:We investigate resource allocation in integrated sensing and communication (ISAC) systems exploiting movable antennas (MAs) to enhance system performance. Unlike the existing ISAC literature, we account for dynamic radar cross-section (RCS) variations. Chance constraints are introduced and integrated into the sensing quality of service (QoS) framework to precisely control the impact of the resulting RCS uncertainties. Taking into account the dynamic nature of the RCS, we jointly optimize the MA positions and the communication and sensing beam design for minimization of the total transmit power at the base station (BS) while ensuring the individual communication and sensing task QoS requirements. To tackle the resulting non-convex mixed integer non-linear program (MINLP), we develop an iterative algorithm to obtain a high quality suboptimal solution. Our numerical results reveal that the proposed MA-enhanced ISAC system cannot only significantly reduce the BS transmit power compared to systems relying on fixed antenna positions and antenna selection but also demonstrates remarkable robustness to RCS fluctuations, underscoring the multifaceted benefits of exploiting MAs in ISAC systems.
Abstract:Massive multi-user multiple-input multiple-output (MU-MIMO) systems enable high spatial resolution, high spectral efficiency, and improved link reliability compared to traditional MIMO systems due to the large number of antenna elements deployed at the base station (BS). Nevertheless, conventional massive MU-MIMO BS transceiver designs rely on centralized linear precoding algorithms, which entail high interconnect data rates and a prohibitive complexity at the centralized baseband processing unit. In this paper, we consider an MU-MIMO system, where each user device is served with multiple independent data streams in the downlink. To address the aforementioned challenges, we propose a novel decentralized BS architecture, and develop a novel decentralized precoding algorithm based on eigen-zero-forcing (EZF). Our proposed approach relies on parallelizing the baseband processing tasks across multiple antenna clusters at the BS, while minimizing the interconnection requirements between the clusters, and is shown to closely approach the performance of centralized EZF.
Abstract:In this paper, we investigate joint unmanned aerial vehicle (UAV) formation and resource allocation optimization for communication-assisted three-dimensional (3D) synthetic aperture radar (SAR) sensing. We consider a system consisting of two UAVs that perform bistatic interferometric SAR (InSAR) sensing for generation of a digital elevation model (DEM) and transmit the radar raw data to a ground station (GS) in real time. To account for practical 3D sensing requirements, we use non-conventional sensing performance metrics, such as the SAR interferometric coherence, i.e., the local cross-correlation between the two co-registered UAV SAR images, the point-to-point InSAR relative height error, and the height of ambiguity, which together characterize the accuracy with which the InSAR system can determine the height of ground targets. Our objective is to jointly optimize the UAV formation, speed, and communication power allocation for maximization of the InSAR coverage while satisfying energy, communication, and InSAR-specific sensing constraints. To solve the formulated non-smooth and non-convex optimization problem, we divide it into three sub-problems and propose a novel alternating optimization (AO) framework that is based on classical, monotonic, and stochastic optimization techniques. The effectiveness of the proposed algorithm is validated through extensive simulations and compared to several benchmark schemes. Furthermore, our simulation results highlight the impact of the UAV-GS communication link on the flying formation and sensing performance and show that the DEM of a large area of interest can be mapped and offloaded to ground successfully, while the ground topography can be estimated with centimeter-scale precision. Lastly, we demonstrate that a low UAV velocity is preferable for InSAR applications as it leads to better sensing accuracy.
Abstract:Reconfigurable massive multiple-input multiple-output (RmMIMO) technology offers increased flexibility for future communication systems by exploiting previously untapped degrees of freedom in the electromagnetic (EM) domain. The representation of the traditional spatial domain channel state information (sCSI) limits the insights into the potential of EM domain channel properties, constraining the base station's (BS) utmost capability for precoding design. This paper leverages the EM domain channel state information (eCSI) for radiation pattern design at the BS. We develop an orthogonal decomposition method based on spherical harmonic functions to decompose the radiation pattern into a linear combination of orthogonal bases. By formulating the radiation pattern design as an optimization problem for the projection coefficients over these bases, we develop a manifold optimization-based method for iterative radiation pattern and digital precoder design. To address the eCSI estimation problem, we capitalize on the inherent structure of the channel. Specifically, we propose a subspace-based scheme to reduce the pilot overhead for wideband sCSI estimation. Given the estimated full-band sCSI, we further employ parameterized methods for angle of arrival estimation. Subsequently, the complete eCSI can be reconstructed after estimating the equivalent channel gain via the least squares method. Simulation results demonstrate that, in comparison to traditional mMIMO systems with fixed antenna radiation patterns, the proposed RmMIMO architecture offers significant throughput gains for multi-user transmission at a low channel estimation overhead.
Abstract:Wireless information and energy transfer (WIET) represents an emerging paradigm which employs controllable transmission of radio-frequency signals for the dual purpose of data communication and wireless charging. As such, WIET is widely regarded as an enabler of envisioned 6G use cases that rely on energy-sustainable Internet-of-Things (IoT) networks, such as smart cities and smart grids. Meeting the quality-of-service demands of WIET, in terms of both data transfer and power delivery, requires effective co-design of the information and energy signals. In this article, we present the main principles and design aspects of WIET, focusing on its integration in 6G networks. First, we discuss how conventional communication notions such as resource allocation and waveform design need to be revisited in the context of WIET. Next, we consider various candidate 6G technologies that can boost WIET efficiency, namely, holographic multiple-input multiple-output, near-field beamforming, terahertz communication, intelligent reflecting surfaces (IRSs), and reconfigurable (fluid) antenna arrays. We introduce respective WIET design methods, analyze the promising performance gains of these WIET systems, and discuss challenges, open issues, and future research directions. Finally, a near-field energy beamforming scheme and a power-based IRS beamforming algorithm are experimentally validated using a wireless energy transfer testbed. The vision of WIET in communication systems has been gaining momentum in recent years, with constant progress with respect to theoretical but also practical aspects. The comprehensive overview of the state of the art of WIET presented in this paper highlights the potentials of WIET systems as well as their overall benefits in 6G networks.
Abstract:Multiple access techniques are fundamental to the design of wireless communication systems, since many crucial components of such systems depend on the choice of the multiple access technique. Because of the importance of multiple access, there has been an ongoing quest during the past decade to develop next generation multiple access (NGMA). Among those potential candidates for NGMA, non-orthogonal multiple access (NOMA) has received significant attention from both the industrial and academic research communities, and has been highlighted in the recently published International Mobile Telecommunications (IMT)-2030 Framework. However, there is still no consensus in the research community about how exactly NOMA assisted NGMA should be designed. This perspective is to outline three important features of NOMA assisted NGMA, namely multi-domain utilization, multi-mode compatibility, and multi-dimensional optimality, where important directions for future research into the design of NOMA assisted NGMA are also discussed.
Abstract:In this paper, we investigate joint 3-dimensional (3D) trajectory planning and resource allocation for rotary-wing unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) sensing. To support emerging real-time SAR applications and enable live mission control, we incorporate real-time communication with a ground station (GS). The UAV's main mission is the mapping of large areas of interest (AoIs) using an onboard SAR system and transferring the unprocessed raw radar data to the ground in real time. We propose a robust trajectory and resource allocation design that takes into account random UAV trajectory deviations. To this end, we model the UAV trajectory deviations and study their effect on the radar coverage. Then, we formulate a robust non-convex mixed-integer non-linear program (MINLP) such that the UAV 3D trajectory and resources are jointly optimized for maximization of the radar ground coverage. A low-complexity sub-optimal solution for the formulated problem is presented. Furthermore, to assess the performance of the sub-optimal algorithm, we derive an upper bound on the optimal solution based on monotonic optimization theory. Simulation results show that the proposed sub-optimal algorithm achieves close-to-optimal performance and not only outperforms several benchmark schemes but is also robust with respect to UAV trajectory deviations.
Abstract:Six-dimensional movable antenna (6DMA) is an effective approach to improve wireless network capacity by adjusting the 3D positions and 3D rotations of distributed antenna surfaces based on the users' spatial distribution and statistical channel information. Although continuously positioning/rotating 6DMA surfaces can achieve the greatest flexibility and thus the highest capacity improvement, it is difficult to implement due to the discrete movement constraints of practical stepper motors. Thus, in this paper, we consider a 6DMA-aided base station (BS) with only a finite number of possible discrete positions and rotations for the 6DMA surfaces. We aim to maximize the average network capacity for random numbers of users at random locations by jointly optimizing the 3D positions and 3D rotations of multiple 6DMA surfaces at the BS subject to discrete movement constraints. In particular, we consider the practical cases with and without statistical channel knowledge of the users, and propose corresponding offline and online optimization algorithms, by leveraging the Monte Carlo and conditional sample mean (CSM) methods, respectively. Simulation results verify the effectiveness of our proposed offline and online algorithms for discrete position/rotation optimization of 6DMA surfaces as compared to various benchmark schemes with fixed-position antennas (FPAs) and 6DMAs with limited movability. It is shown that 6DMA-BS can significantly enhance wireless network capacity, even under discrete position/rotation constraints, by exploiting the spatial distribution characteristics of the users.
Abstract:This paper proposes a novel localization algorithm using the reconfigurable intelligent surface (RIS) received signal, i.e., RIS information. Compared with BS received signal, i.e., BS information, RIS information offers higher dimension and richer feature set, thereby providing an enhanced capacity to distinguish positions of the mobile users (MUs). Additionally, we address a practical scenario where RIS contains some unknown (number and places) faulty elements that cannot receive signals. Initially, we employ transfer learning to design a two-phase transfer learning (TPTL) algorithm, designed for accurate detection of faulty elements. Then our objective is to regain the information lost from the faulty elements and reconstruct the complete high-dimensional RIS information for localization. To this end, we propose a transfer-enhanced dual-stage (TEDS) algorithm. In \emph{Stage I}, we integrate the CNN and variational autoencoder (VAE) to obtain the RIS information, which in \emph{Stage II}, is input to the transferred DenseNet 121 to estimate the location of the MU. To gain more insight, we propose an alternative algorithm named transfer-enhanced direct fingerprint (TEDF) algorithm which only requires the BS information. The comparison between TEDS and TEDF reveals the effectiveness of faulty element detection and the benefits of utilizing the high-dimensional RIS information for localization. Besides, our empirical results demonstrate that the performance of the localization algorithm is dominated by the high-dimensional RIS information and is robust to unoptimized phase shifts and signal-to-noise ratio (SNR).