Abstract:In this paper, we propose a novel polarized six-dimensional movable antenna (P-6DMA) to enhance the performance of wireless communication cost-effectively. Specifically, the P-6DMA enables polarforming by adaptively tuning the antenna's polarization electrically as well as controls the antenna's rotation mechanically, thereby exploiting both polarization and spatial diversity to reconfigure wireless channels for improving communication performance. First, we model the P-6DMA channel in terms of transceiver antenna polarforming vectors and antenna rotations. We then propose a new two-timescale transmission protocol to maximize the weighted sum-rate for a P-6DMA-enhanced multiuser system. Specifically, antenna rotations at the base station (BS) are first optimized based on the statistical channel state information (CSI) of all users, which varies at a much slower rate compared to their instantaneous CSI. Then, transceiver polarforming vectors are designed to cater to the instantaneous CSI under the optimized BS antennas' rotations. Under the polarforming phase shift and amplitude constraints, a new polarforming and rotation joint design problem is efficiently addressed by a low-complexity algorithm based on penalty dual decomposition, where the polarforming coefficients are updated in parallel to reduce computational time. Simulation results demonstrate the significant performance advantages of polarforming, antenna rotation, and their joint design in comparison with various benchmarks without polarforming or antenna rotation adaptation.
Abstract:In this paper, we propose a novel intelligent polarforming antenna (IPA) to achieve cost-effective wireless sensing and communication. Specifically, the IPA can enable polarforming by adaptively controlling the antenna's polarization electrically as well as its position/rotation mechanically, so as to effectively exploit polarization and spatial diversity to reconfigure wireless channels for improving sensing and communication performance. We study an IPA-enhanced integrated sensing and communication (ISAC) system that utilizes user location sensing to facilitate communication between an IPA-equipped base station (BS) and IPA-equipped users. First, we model the IPA channel in terms of transceiver antenna polarforming vectors and antenna positions/rotations. We then propose a two-timescale ISAC protocol, where in the slow timescale, user localization is first performed, followed by the optimization of the BS antennas' positions and rotations based on the sensed user locations; subsequently, in the fast timescale, transceiver polarforming is adapted to cater to the instantaneous channel state information (CSI), with the optimized BS antennas' positions and rotations. We propose a new polarforming-based user localization method that uses a structured time-domain pattern of pilot-polarforming vectors to extract the common stable components in the IPA channel across different polarizations based on the parallel factor (PARAFAC) tensor model. Moreover, we maximize the achievable average sum-rate of users by jointly optimizing the fast-timescale transceiver polarforming, including phase shifts and amplitude variations, along with the slow-timescale antenna rotations and positions at the BS. Simulation results validate the effectiveness of polarforming-based localization algorithm and demonstrate the performance advantages of polarforming, antenna placement, and their joint design.
Abstract:Six-dimensional movable antenna (6DMA) is a promising technology to fully exploit spatial variation in wireless channels by allowing flexible adjustment of three-dimensional (3D) positions and rotations of antennas at the transceiver. In this paper, we investigate the practical low-complexity design of 6DMA-enabled communication systems, including transmission protocol, statistical channel information (SCI) acquisition, and joint position and rotation optimization of 6DMA surfaces based on the SCI of users. Specifically, an orthogonal matching pursuit (OMP)-based algorithm is proposed for the estimation of SCI of users at all possible position-rotation pairs of 6DMA surfaces based on the channel measurements at a small subset of position-rotation pairs. Then, the average sum logarithmic rate of all users is maximized by jointly designing the positions and rotations of 6DMA surfaces based on their SCI acquired. Different from prior works on 6DMA which adopt alternating optimization to design 6DMA positions/rotations with iterations, we propose a new sequential optimization approach that first determines 6DMA rotations and then finds their feasible positions to realize the optimized rotations subject to practical antenna placement constraints. Simulation results show that the proposed sequential optimization significantly reduces the computational complexity of conventional alternating optimization, while achieving comparable communication performance. It is also shown that the proposed SCI-based 6DMA design can effectively enhance the communication throughput of wireless networks over existing fixed (position and rotation) antenna arrays, yet with a practically appealing low-complexity implementation.
Abstract:Six-dimensional movable antenna (6DMA) is an innovative technology to improve wireless network capacity by adjusting 3D positions and 3D rotations of antenna surfaces based on channel spatial distribution. However, the existing works on 6DMA have assumed a central processing unit (CPU) to jointly process the signals of all 6DMA surfaces to execute various tasks. This inevitably incurs prohibitively high processing cost for channel estimation. Therefore, we propose a distributed 6DMA processing architecture to reduce processing complexity of CPU by equipping each 6DMA surface with a local processing unit (LPU). In particular, we unveil for the first time a new \textbf{\textit{directional sparsity}} property of 6DMA channels, where each user has significant channel gains only for a (small) subset of 6DMA position-rotation pairs, which can receive direct/reflected signals from users. In addition, we propose a practical three-stage protocol for the 6DMA-equipped base station (BS) to conduct statistical CSI acquisition for all 6DMA candidate positions/rotations, 6DMA position/rotation optimization, and instantaneous channel estimation for user data transmission with optimized 6DMA positions/rotations. Specifically, the directional sparsity is leveraged to develop distributed algorithms for joint sparsity detection and channel power estimation, as well as for directional sparsity-aided instantaneous channel estimation. Using the estimated channel power, we develop a channel power-based optimization algorithm to maximize the ergodic sum rate of the users by optimizing the antenna positions/rotations. Simulation results show that our channel estimation algorithms are more accurate than benchmarks with lower pilot overhead, and our optimization outperforms fluid/movable antennas optimized only in two dimensions (2D), even when the latter have perfect instantaneous CSI.
Abstract:Six-dimensional movable antenna (6DMA) is an effective approach to improve wireless network capacity by adjusting the 3D positions and 3D rotations of distributed antenna surfaces based on the users' spatial distribution and statistical channel information. Although continuously positioning/rotating 6DMA surfaces can achieve the greatest flexibility and thus the highest capacity improvement, it is difficult to implement due to the discrete movement constraints of practical stepper motors. Thus, in this paper, we consider a 6DMA-aided base station (BS) with only a finite number of possible discrete positions and rotations for the 6DMA surfaces. We aim to maximize the average network capacity for random numbers of users at random locations by jointly optimizing the 3D positions and 3D rotations of multiple 6DMA surfaces at the BS subject to discrete movement constraints. In particular, we consider the practical cases with and without statistical channel knowledge of the users, and propose corresponding offline and online optimization algorithms, by leveraging the Monte Carlo and conditional sample mean (CSM) methods, respectively. Simulation results verify the effectiveness of our proposed offline and online algorithms for discrete position/rotation optimization of 6DMA surfaces as compared to various benchmark schemes with fixed-position antennas (FPAs) and 6DMAs with limited movability. It is shown that 6DMA-BS can significantly enhance wireless network capacity, even under discrete position/rotation constraints, by exploiting the spatial distribution characteristics of the users.
Abstract:In this paper, we propose a new six-dimensional (6D) movable antenna (6DMA) system for future wireless networks to improve the communication performance. Unlike the traditional fixed-position antenna (FPA) and existing fluid antenna/two-dimensional (2D) movable antenna (FA/2DMA) systems that adjust the positions of antennas only, the proposed 6DMA system consists of distributed antenna surfaces with independently adjustable three-dimensional (3D) positions as well as 3D rotations within a given space. In particular, this paper applies the 6DMA to the base station (BS) in wireless networks to provide full degrees of freedom (DoFs) for the BS to adapt to the dynamic user spatial distribution in the network. However, a challenging new problem arises on how to optimally control the 6D positions and rotations of all 6DMA surfaces at the BS to maximize the network capacity based on the user spatial distribution, subject to the practical constraints on 6D antennas' movement. To tackle this problem, we first model the 6DMA-enabled BS and the user channels with the BS in terms of 6D positions and rotations of all 6DMA surfaces. Next, we propose an efficient alternating optimization algorithm to search for the best 6D positions and rotations of all 6DMA surfaces by leveraging the Monte Carlo simulation technique. Specifically, we sequentially optimize the 3D position/3D rotation of each 6DMA surface with those of the other surfaces fixed in an iterative manner. Numerical results show that our proposed 6DMA-BS can significantly improve the network capacity as compared to the benchmark BS architectures with FPAs or 6DMAs with limited/partial movability, especially when the user distribution is more spatially non-uniform.