Abstract:Understanding what emotions images evoke in their viewers is a foundational goal in human-centric visual computing. While recent advances in vision-language models (VLMs) have shown promise for visual emotion analysis (VEA), several key challenges remain unresolved. Emotional cues in images are often abstract, overlapping, and entangled, making them difficult to model and interpret. Moreover, VLMs struggle to align these complex visual patterns with emotional semantics due to limited supervision and sparse emotional grounding. Finally, existing approaches lack structured affective knowledge to resolve ambiguity and ensure consistent emotional reasoning across diverse visual domains. To address these limitations, we propose \textbf{K-EVER\textsuperscript{2}}, a knowledge-enhanced framework for emotion reasoning and retrieval. Our approach introduces a semantically structured formulation of visual emotion cues and integrates external affective knowledge through multimodal alignment. Without relying on handcrafted labels or direct emotion supervision, K-EVER\textsuperscript{2} achieves robust and interpretable emotion predictions across heterogeneous image types. We validate our framework on three representative benchmarks, Emotion6, EmoSet, and M-Disaster, covering social media imagery, human-centric scenes, and disaster contexts. K-EVER\textsuperscript{2} consistently outperforms strong CNN and VLM baselines, achieving up to a \textbf{19\% accuracy gain} for specific emotions and a \textbf{12.3\% average accuracy gain} across all emotion categories. Our results demonstrate a scalable and generalizable solution for advancing emotional understanding of visual content.
Abstract:User sentiment on social media reveals the underlying social trends, crises, and needs. Researchers have analyzed users' past messages to trace the evolution of sentiments and reconstruct sentiment dynamics. However, predicting the imminent sentiment of an ongoing event is rarely studied. In this paper, we address the problem of \textbf{sentiment forecasting} on social media to predict the user's future sentiment in response to the development of the event. We extract sentiment-related features to enhance the modeling skill and propose a multi-perspective role-playing framework to simulate the process of human response. Our preliminary results show significant improvement in sentiment forecasting on both microscopic and macroscopic levels.
Abstract:Aerial vision-and-language navigation (VLN), requiring drones to interpret natural language instructions and navigate complex urban environments, emerges as a critical embodied AI challenge that bridges human-robot interaction, 3D spatial reasoning, and real-world deployment. Although existing ground VLN agents achieved notable results in indoor and outdoor settings, they struggle in aerial VLN due to the absence of predefined navigation graphs and the exponentially expanding action space in long-horizon exploration. In this work, we propose \textbf{CityNavAgent}, a large language model (LLM)-empowered agent that significantly reduces the navigation complexity for urban aerial VLN. Specifically, we design a hierarchical semantic planning module (HSPM) that decomposes the long-horizon task into sub-goals with different semantic levels. The agent reaches the target progressively by achieving sub-goals with different capacities of the LLM. Additionally, a global memory module storing historical trajectories into a topological graph is developed to simplify navigation for visited targets. Extensive benchmark experiments show that our method achieves state-of-the-art performance with significant improvement. Further experiments demonstrate the effectiveness of different modules of CityNavAgent for aerial VLN in continuous city environments. The code is available at \href{https://github.com/VinceOuti/CityNavAgent}{link}.
Abstract:Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
Abstract:Large multimodal models exhibit remarkable intelligence, yet their embodied cognitive abilities during motion in open-ended urban 3D space remain to be explored. We introduce a benchmark to evaluate whether video-large language models (Video-LLMs) can naturally process continuous first-person visual observations like humans, enabling recall, perception, reasoning, and navigation. We have manually control drones to collect 3D embodied motion video data from real-world cities and simulated environments, resulting in 1.5k video clips. Then we design a pipeline to generate 5.2k multiple-choice questions. Evaluations of 17 widely-used Video-LLMs reveal current limitations in urban embodied cognition. Correlation analysis provides insight into the relationships between different tasks, showing that causal reasoning has a strong correlation with recall, perception, and navigation, while the abilities for counterfactual and associative reasoning exhibit lower correlation with other tasks. We also validate the potential for Sim-to-Real transfer in urban embodiment through fine-tuning.
Abstract:Embodied artificial intelligence emphasizes the role of an agent's body in generating human-like behaviors. The recent efforts on EmbodiedAI pay a lot of attention to building up machine learning models to possess perceiving, planning, and acting abilities, thereby enabling real-time interaction with the world. However, most works focus on bounded indoor environments, such as navigation in a room or manipulating a device, with limited exploration of embodying the agents in open-world scenarios. That is, embodied intelligence in the open and outdoor environment is less explored, for which one potential reason is the lack of high-quality simulators, benchmarks, and datasets. To address it, in this paper, we construct a benchmark platform for embodied intelligence evaluation in real-world city environments. Specifically, we first construct a highly realistic 3D simulation environment based on the real buildings, roads, and other elements in a real city. In this environment, we combine historically collected data and simulation algorithms to conduct simulations of pedestrian and vehicle flows with high fidelity. Further, we designed a set of evaluation tasks covering different EmbodiedAI abilities. Moreover, we provide a complete set of input and output interfaces for access, enabling embodied agents to easily take task requirements and current environmental observations as input and then make decisions and obtain performance evaluations. On the one hand, it expands the capability of existing embodied intelligence to higher levels. On the other hand, it has a higher practical value in the real world and can support more potential applications for artificial general intelligence. Based on this platform, we evaluate some popular large language models for embodied intelligence capabilities of different dimensions and difficulties.