Beijing International Center for Mathematical Research, Peking University, Center for Machine Learning Research, Peking University, National Biomedical Imaging Center, Peking University
Abstract:Volumetric segmentation is crucial for medical imaging but is often constrained by labor-intensive manual annotations and the need for scenario-specific model training. Furthermore, existing general segmentation models are inefficient due to their design and inferential approaches. Addressing this clinical demand, we introduce PropSAM, a propagation-based segmentation model that optimizes the use of 3D medical structure information. PropSAM integrates a CNN-based UNet for intra-slice processing with a Transformer-based module for inter-slice propagation, focusing on structural and semantic continuities to enhance segmentation across various modalities. Distinctively, PropSAM operates on a one-view prompt, such as a 2D bounding box or sketch mask, unlike conventional models that require two-view prompts. It has demonstrated superior performance, significantly improving the Dice Similarity Coefficient (DSC) across 44 medical datasets and various imaging modalities, outperforming models like MedSAM and SegVol with an average DSC improvement of 18.1%. PropSAM also maintains stable predictions despite prompt deviations and varying propagation configurations, confirmed by one-way ANOVA tests with P>0.5985 and P>0.6131, respectively. Moreover, PropSAM's efficient architecture enables faster inference speeds (Wilcoxon rank-sum test, P<0.001) and reduces user interaction time by 37.8% compared to two-view prompt models. Its ability to handle irregular and complex objects with robust performance further demonstrates its potential in clinical settings, facilitating more automated and reliable medical imaging analyses with minimal retraining.
Abstract:Data assimilation has become a crucial technique aiming to combine physical models with observational data to estimate state variables. Traditional assimilation algorithms often face challenges of high nonlinearity brought by both the physical and observational models. In this work, we propose a novel data-driven assimilation algorithm based on generative models to address such concerns. Our State-Observation Augmented Diffusion (SOAD) model is designed to handle nonlinear physical and observational models more effectively. The marginal posterior associated with SOAD has been derived and then proved to match the real posterior under mild assumptions, which shows theoretical superiority over previous score-based assimilation works. Experimental results also indicate that our SOAD model may offer improved accuracy over existing data-driven methods.
Abstract:Large language models (LLMs) benefit greatly from prompt engineering, with in-context learning standing as a pivital technique. While former approaches have provided various ways to construct the demonstrations used for in-context learning, they often ignore the inherent heterogeneity within datasets, applying the same demonstrations to all reasoning questions. We observed that the effectiveness of demonstrations varies depending on the specific question. This motivates our exploration of using prompt engineering to select appropriate demonstrations. To address the challenge of automatically creating and choosing demonstrations tailored to each question, we propose a novel prompt engineering workflow built around a novel object called the "demonstration notebook." This notebook helps identify the most suitable in-context learning example for a question by gathering and reusing information from the LLM's past interactions. Our experiments show that this approach outperforms all existing methods for automatic demonstration construction and selection (as far as we know), achieving state-of-the-art results on serveral reasoning benchmarks. The method's versatility is further demonstrated by its success in text summarization and prompt compression tasks. Additionally, we contribute a rigorous analysis method to reveal the "demonstrative regime" of a demonstration, providing valuable insights into how demonstrations relate to different question types within a dataset.
Abstract:Few-shot NER aims to identify entities of target types with only limited number of illustrative instances. Unfortunately, few-shot NER is severely challenged by the intrinsic precise generalization problem, i.e., it is hard to accurately determine the desired target type due to the ambiguity stemming from information deficiency. In this paper, we propose Superposition Concept Discriminator (SuperCD), which resolves the above challenge via an active learning paradigm. Specifically, a concept extractor is first introduced to identify superposition concepts from illustrative instances, with each concept corresponding to a possible generalization boundary. Then a superposition instance retriever is applied to retrieve corresponding instances of these superposition concepts from large-scale text corpus. Finally, annotators are asked to annotate the retrieved instances and these annotated instances together with original illustrative instances are used to learn FS-NER models. To this end, we learn a universal concept extractor and superposition instance retriever using a large-scale openly available knowledge bases. Experiments show that SuperCD can effectively identify superposition concepts from illustrative instances, retrieve superposition instances from large-scale corpus, and significantly improve the few-shot NER performance with minimal additional efforts.
Abstract:The interactive theorem prover, Lean, enables the verification of formal mathematical proofs and is backed by an expanding community. Central to this ecosystem is its mathematical library, mathlib4, which lays the groundwork for the formalization of an expanding range of mathematical theories. However, searching for theorems in mathlib4 can be challenging. To successfully search in mathlib4, users often need to be familiar with its naming conventions or documentation strings. Therefore, creating a semantic search engine that can be used easily by individuals with varying familiarity with mathlib4 is very important. In this paper, we present a semantic search engine for mathlib4 that accepts informal queries and finds the relevant theorems. We also establish a benchmark for assessing the performance of various search engines for mathlib4.
Abstract:Non-linear effects in long-haul, high-speed optical fiber systems significantly hinder channel capacity. While the Digital Backward Propagation algorithm (DBP) with adaptive filter (ADF) can mitigate these effects, it suffers from an overwhelming computational complexity. Recent solutions have incorporated deep neural networks in a data-driven strategy to alleviate this complexity in the DBP model. However, these models are often limited to a specific symbol rate and channel number, necessitating retraining for different settings, their performance declines significantly under high-speed and high-power conditions. We introduce Meta-DSP, a novel data-driven nonlinear compensation model based on meta-learning that processes multi-modal data across diverse transmission rates, power levels, and channel numbers. This not only enhances signal quality but also substantially reduces the complexity of the nonlinear processing algorithm. Our model delivers a 0.7 dB increase in the Q-factor over Electronic Dispersion Compensation (EDC), and compared to DBP, it curtails computational complexity by a factor of ten while retaining comparable performance. From the perspective of the entire signal processing system, the core idea of Meta-DSP can be employed in any segment of the overall communication system to enhance the model's scalability and generalization performance. Our research substantiates Meta-DSP's proficiency in addressing the critical parameters defining optical communication networks.
Abstract:Prompt Engineering (PE) has emerged as a critical technique for guiding Large Language Models (LLMs) in solving intricate tasks. Its importance is highlighted by its potential to significantly enhance the efficiency and effectiveness of human-machine interaction. As tasks grow increasingly complex, recent advanced PE methods have extended beyond the limitations of single-round interactions to embrace multi-round interactions, which allows for a deeper and more nuanced engagement with LLMs. In this paper, we propose an optimal control framework tailored for multi-round interactions with LLMs. This framework provides a unified mathematical structure that not only systematizes the existing PE methods but also sets the stage for rigorous analytical improvements. Furthermore, we extend this framework to include PE via ensemble methods and multi-agent collaboration, thereby enlarging the scope of applicability. By adopting an optimal control perspective, we offer fresh insights into existing PE methods and highlight theoretical challenges that warrant future research. Besides, our work lays a foundation for the development of more effective and interpretable PE methods.
Abstract:With the rapid development of artificial intelligence, large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning. This has sparked significant interest in applying LLMs to enhance various aspects of healthcare, ranging from medical education to clinical decision support. However, medicine involves multifaceted data modalities and nuanced reasoning skills, presenting challenges for integrating LLMs. This paper provides a comprehensive review on the applications and implications of LLMs in medicine. It begins by examining the fundamental applications of general-purpose and specialized LLMs, demonstrating their utilities in knowledge retrieval, research support, clinical workflow automation, and diagnostic assistance. Recognizing the inherent multimodality of medicine, the review then focuses on multimodal LLMs, investigating their ability to process diverse data types like medical imaging and EHRs to augment diagnostic accuracy. To address LLMs' limitations regarding personalization and complex clinical reasoning, the paper explores the emerging development of LLM-powered autonomous agents for healthcare. Furthermore, it summarizes the evaluation methodologies for assessing LLMs' reliability and safety in medical contexts. Overall, this review offers an extensive analysis on the transformative potential of LLMs in modern medicine. It also highlights the pivotal need for continuous optimizations and ethical oversight before these models can be effectively integrated into clinical practice. Visit https://github.com/mingze-yuan/Awesome-LLM-Healthcare for an accompanying GitHub repository containing latest papers.
Abstract:Data assimilation is crucial in a wide range of applications, but it often faces challenges such as high computational costs due to data dimensionality and incomplete understanding of underlying mechanisms. To address these challenges, this study presents a novel assimilation framework, termed Latent Assimilation with Implicit Neural Representations (LAINR). By introducing Spherical Implicit Neural Representations (SINR) along with a data-driven uncertainty estimator of the trained neural networks, LAINR enhances efficiency in assimilation process. Experimental results indicate that LAINR holds certain advantage over existing methods based on AutoEncoders, both in terms of accuracy and efficiency.
Abstract:This paper presents a novel, interdisciplinary study that leverages a Machine Learning (ML) assisted framework to explore the geometry of affine Deligne-Lusztig varieties (ADLV). The primary objective is to investigate the nonemptiness pattern, dimension and enumeration of irreducible components of ADLV. Our proposed framework demonstrates a recursive pipeline of data generation, model training, pattern analysis, and human examination, presenting an intricate interplay between ML and pure mathematical research. Notably, our data-generation process is nuanced, emphasizing the selection of meaningful subsets and appropriate feature sets. We demonstrate that this framework has a potential to accelerate pure mathematical research, leading to the discovery of new conjectures and promising research directions that could otherwise take significant time to uncover. We rediscover the virtual dimension formula and provide a full mathematical proof of a newly identified problem concerning a certain lower bound of dimension. Furthermore, we extend an open invitation to the readers by providing the source code for computing ADLV and the ML models, promoting further explorations. This paper concludes by sharing valuable experiences and highlighting lessons learned from this collaboration.