Oak Ridge National Laboratory
Abstract:We discuss the challenges and propose research directions for using AI to revolutionize the development of high-performance computing (HPC) software. AI technologies, in particular large language models, have transformed every aspect of software development. For its part, HPC software is recognized as a highly specialized scientific field of its own. We discuss the challenges associated with leveraging state-of-the-art AI technologies to develop such a unique and niche class of software and outline our research directions in the two US Department of Energy--funded projects for advancing HPC Software via AI: Ellora and Durban.
Abstract:Sparse observations and coarse-resolution climate models limit effective regional decision-making, underscoring the need for robust downscaling. However, existing AI methods struggle with generalization across variables and geographies and are constrained by the quadratic complexity of Vision Transformer (ViT) self-attention. We introduce ORBIT-2, a scalable foundation model for global, hyper-resolution climate downscaling. ORBIT-2 incorporates two key innovations: (1) Residual Slim ViT (Reslim), a lightweight architecture with residual learning and Bayesian regularization for efficient, robust prediction; and (2) TILES, a tile-wise sequence scaling algorithm that reduces self-attention complexity from quadratic to linear, enabling long-sequence processing and massive parallelism. ORBIT-2 scales to 10 billion parameters across 32,768 GPUs, achieving up to 1.8 ExaFLOPS sustained throughput and 92-98% strong scaling efficiency. It supports downscaling to 0.9 km global resolution and processes sequences up to 4.2 billion tokens. On 7 km resolution benchmarks, ORBIT-2 achieves high accuracy with R^2 scores in the range of 0.98 to 0.99 against observation data.
Abstract:Atomistic materials modeling is a critical task with wide-ranging applications, from drug discovery to materials science, where accurate predictions of the target material property can lead to significant advancements in scientific discovery. Graph Neural Networks (GNNs) represent the state-of-the-art approach for modeling atomistic material data thanks to their capacity to capture complex relational structures. While machine learning performance has historically improved with larger models and datasets, GNNs for atomistic materials modeling remain relatively small compared to large language models (LLMs), which leverage billions of parameters and terabyte-scale datasets to achieve remarkable performance in their respective domains. To address this gap, we explore the scaling limits of GNNs for atomistic materials modeling by developing a foundational model with billions of parameters, trained on extensive datasets in terabyte-scale. Our approach incorporates techniques from LLM libraries to efficiently manage large-scale data and models, enabling both effective training and deployment of these large-scale GNN models. This work addresses three fundamental questions in scaling GNNs: the potential for scaling GNN model architectures, the effect of dataset size on model accuracy, and the applicability of LLM-inspired techniques to GNN architectures. Specifically, the outcomes of this study include (1) insights into the scaling laws for GNNs, highlighting the relationship between model size, dataset volume, and accuracy, (2) a foundational GNN model optimized for atomistic materials modeling, and (3) a GNN codebase enhanced with advanced LLM-based training techniques. Our findings lay the groundwork for large-scale GNNs with billions of parameters and terabyte-scale datasets, establishing a scalable pathway for future advancements in atomistic materials modeling.
Abstract:Magnetic geometry has a significant effect on the level of turbulent transport in fusion plasmas. Here, we model and analyze this dependence using multiple machine learning methods and a dataset of > 200,000 nonlinear simulations of ion-temperature-gradient turbulence in diverse non-axisymmetric geometries. The dataset is generated using a large collection of both optimized and randomly generated stellarator equilibria. At fixed gradients, the turbulent heat flux varies between geometries by several orders of magnitude. Trends are apparent among the configurations with particularly high or low heat flux. Regression and classification techniques from machine learning are then applied to extract patterns in the dataset. Due to a symmetry of the gyrokinetic equation, the heat flux and regressions thereof should be invariant to translations of the raw features in the parallel coordinate, similar to translation invariance in computer vision applications. Multiple regression models including convolutional neural networks (CNNs) and decision trees can achieve reasonable predictive power for the heat flux in held-out test configurations, with highest accuracy for the CNNs. Using Spearman correlation, sequential feature selection, and Shapley values to measure feature importance, it is consistently found that the most important geometric lever on the heat flux is the flux surface compression in regions of bad curvature. The second most important feature relates to the magnitude of geodesic curvature. These two features align remarkably with surrogates that have been proposed based on theory, while the methods here allow a natural extension to more features for increased accuracy. The dataset, released with this publication, may also be used to test other proposed surrogates, and we find many previously published proxies do correlate well with both the heat flux and stability boundary.
Abstract:Accurate predictions and uncertainty quantification (UQ) are essential for decision-making in risk-sensitive fields such as system safety modeling. Deep ensembles (DEs) are efficient and scalable methods for UQ in Deep Neural Networks (DNNs); however, their performance is limited when constructed by simply retraining the same DNN multiple times with randomly sampled initializations. To overcome this limitation, we propose a novel method that combines Bayesian optimization (BO) with DE, referred to as BODE, to enhance both predictive accuracy and UQ. We apply BODE to a case study involving a Densely connected Convolutional Neural Network (DCNN) trained on computational fluid dynamics (CFD) data to predict eddy viscosity in sodium fast reactor thermal stratification modeling. Compared to a manually tuned baseline ensemble, BODE estimates total uncertainty approximately four times lower in a noise-free environment, primarily due to the baseline's overestimation of aleatoric uncertainty. Specifically, BODE estimates aleatoric uncertainty close to zero, while aleatoric uncertainty dominates the total uncertainty in the baseline ensemble. We also observe a reduction of more than 30% in epistemic uncertainty. When Gaussian noise with standard deviations of 5% and 10% is introduced into the data, BODE accurately fits the data and estimates uncertainty that aligns with the data noise. These results demonstrate that BODE effectively reduces uncertainty and enhances predictions in data-driven models, making it a flexible approach for various applications requiring accurate predictions and robust UQ.
Abstract:Optimally designing molten salt applications requires knowledge of their thermophysical properties, but existing databases are incomplete, and experiments are challenging. Ideal mixing and Redlich-Kister models are computationally cheap but lack either accuracy or generality. To address this, a transfer learning approach using deep neural networks (DNNs) is proposed, combining Redlich-Kister models, experimental data, and ab initio properties. The approach predicts molten salt density with high accuracy ($r^{2}$ > 0.99, MAPE < 1%), outperforming the alternatives.
Abstract:Anomaly detection in computational workflows is critical for ensuring system reliability and security. However, traditional rule-based methods struggle to detect novel anomalies. This paper leverages large language models (LLMs) for workflow anomaly detection by exploiting their ability to learn complex data patterns. Two approaches are investigated: 1) supervised fine-tuning (SFT), where pre-trained LLMs are fine-tuned on labeled data for sentence classification to identify anomalies, and 2) in-context learning (ICL) where prompts containing task descriptions and examples guide LLMs in few-shot anomaly detection without fine-tuning. The paper evaluates the performance, efficiency, generalization of SFT models, and explores zero-shot and few-shot ICL prompts and interpretability enhancement via chain-of-thought prompting. Experiments across multiple workflow datasets demonstrate the promising potential of LLMs for effective anomaly detection in complex executions.
Abstract:We present our work on developing and training scalable graph foundation models (GFM) using HydraGNN, a multi-headed graph convolutional neural network architecture. HydraGNN expands the boundaries of graph neural network (GNN) in both training scale and data diversity. It abstracts over message passing algorithms, allowing both reproduction of and comparison across algorithmic innovations that define convolution in GNNs. This work discusses a series of optimizations that have allowed scaling up the GFM training to tens of thousands of GPUs on datasets that consist of hundreds of millions of graphs. Our GFMs use multi-task learning (MTL) to simultaneously learn graph-level and node-level properties of atomistic structures, such as the total energy and atomic forces. Using over 150 million atomistic structures for training, we illustrate the performance of our approach along with the lessons learned on two United States Department of Energy (US-DOE) supercomputers, namely the Perlmutter petascale system at the National Energy Research Scientific Computing Center and the Frontier exascale system at Oak Ridge National Laboratory. The HydraGNN architecture enables the GFM to achieve near-linear strong scaling performance using more than 2,000 GPUs on Perlmutter and 16,000 GPUs on Frontier. Hyperparameter optimization (HPO) was performed on over 64,000 GPUs on Frontier to select GFM architectures with high accuracy. Early stopping was applied on each GFM architecture for energy awareness in performing such an extreme-scale task. The training of an ensemble of highest-ranked GFM architectures continued until convergence to establish uncertainty quantification (UQ) capabilities with ensemble learning. Our contribution opens the door for rapidly developing, training, and deploying GFMs using large-scale computational resources to enable AI-accelerated materials discovery and design.
Abstract:The threat of geomagnetic disturbances (GMDs) to the reliable operation of the bulk energy system has spurred the development of effective strategies for mitigating their impacts. One such approach involves placing transformer neutral blocking devices, which interrupt the path of geomagnetically induced currents (GICs) to limit their impact. The high cost of these devices and the sparsity of transformers that experience high GICs during GMD events, however, calls for a sparse placement strategy that involves high computational cost. To address this challenge, we developed a physics-informed heterogeneous graph neural network (PIHGNN) for solving the graph-based dc-blocker placement problem. Our approach combines a heterogeneous graph neural network (HGNN) with a physics-informed neural network (PINN) to capture the diverse types of nodes and edges in ac/dc networks and incorporates the physical laws of the power grid. We train the PIHGNN model using a surrogate power flow model and validate it using case studies. Results demonstrate that PIHGNN can effectively and efficiently support the deployment of GIC dc-current blockers, ensuring the continued supply of electricity to meet societal demands. Our approach has the potential to contribute to the development of more reliable and resilient power grids capable of withstanding the growing threat that GMDs pose.
Abstract:Earth system predictability is challenged by the complexity of environmental dynamics and the multitude of variables involved. Current AI foundation models, although advanced by leveraging large and heterogeneous data, are often constrained by their size and data integration, limiting their effectiveness in addressing the full range of Earth system prediction challenges. To overcome these limitations, we introduce the Oak Ridge Base Foundation Model for Earth System Predictability (ORBIT), an advanced vision-transformer model that scales up to 113 billion parameters using a novel hybrid tensor-data orthogonal parallelism technique. As the largest model of its kind, ORBIT surpasses the current climate AI foundation model size by a thousandfold. Performance scaling tests conducted on the Frontier supercomputer have demonstrated that ORBIT achieves 230 to 707 PFLOPS, with scaling efficiency maintained at 78% to 96% across 24,576 AMD GPUs. These breakthroughs establish new advances in AI-driven climate modeling and demonstrate promise to significantly improve the Earth system predictability.