Abstract:We present a novel extension of the traditional neural network approach to classification tasks, referred to as variational classification (VC). By incorporating latent variable modeling, akin to the relationship between variational autoencoders and traditional autoencoders, we derive a training objective based on the evidence lower bound (ELBO), optimized using an adversarial approach. Our VC model allows for more flexibility in design choices, in particular class-conditional latent priors, in place of the implicit assumptions made in off-the-shelf softmax classifiers. Empirical evaluation on image and text classification datasets demonstrates the effectiveness of our approach in terms of maintaining prediction accuracy while improving other desirable properties such as calibration and adversarial robustness, even when applied to out-of-domain data.
Abstract:With the recent advances in natural language processing (NLP), a vast number of applications have emerged across various use cases. Among the plethora of NLP applications, many academic researchers are motivated to do work that has a positive social impact, in line with the recent initiatives of NLP for Social Good (NLP4SG). However, it is not always obvious to researchers how their research efforts are tackling today's big social problems. Thus, in this paper, we introduce NLP4SGPAPERS, a scientific dataset with three associated tasks that can help identify NLP4SG papers and characterize the NLP4SG landscape by: (1) identifying the papers that address a social problem, (2) mapping them to the corresponding UN Sustainable Development Goals (SDGs), and (3) identifying the task they are solving and the methods they are using. Using state-of-the-art NLP models, we address each of these tasks and use them on the entire ACL Anthology, resulting in a visualization workspace that gives researchers a comprehensive overview of the field of NLP4SG. Our website is available at https://nlp4sg.vercel.app . We released our data at https://huggingface.co/datasets/feradauto/NLP4SGPapers and code at https://github.com/feradauto/nlp4sg .
Abstract:NLP datasets are richer than just input-output pairs; rather, they carry causal relations between the input and output variables. In this work, we take sentiment classification as an example and look into the causal relations between the review (X) and sentiment (Y). As psychology studies show that language can affect emotion, different psychological processes are evoked when a person first makes a rating and then self-rationalizes their feeling in a review (where the sentiment causes the review, i.e., Y -> X), versus first describes their experience, and weighs the pros and cons to give a final rating (where the review causes the sentiment, i.e., X -> Y ). Furthermore, it is also a completely different psychological process if an annotator infers the original rating of the user by theory of mind (ToM) (where the review causes the rating, i.e., X -ToM-> Y ). In this paper, we verbalize these three causal mechanisms of human psychological processes of sentiment classification into three different causal prompts, and study (1) how differently they perform, and (2) what nature of sentiment classification data leads to agreement or diversity in the model responses elicited by the prompts. We suggest future work raise awareness of different causal structures in NLP tasks. Our code and data are at https://github.com/cogito233/psych-causal-prompt
Abstract:Large language models generate fluent texts and can follow natural language instructions to solve a wide range of tasks without task-specific training. Nevertheless, it is notoriously difficult to control their generation to satisfy the various constraints required by different applications. In this work, we present InstructCTG, a controlled text generation framework that incorporates different constraints by conditioning on natural language descriptions and demonstrations of the constraints. In particular, we first extract the underlying constraints of natural texts through a combination of off-the-shelf NLP tools and simple heuristics. We then verbalize the constraints into natural language instructions to form weakly supervised training data. By prepending natural language descriptions of the constraints and a few demonstrations, we fine-tune a pre-trained language model to incorporate various types of constraints. Compared to existing search-based or score-based methods, InstructCTG is more flexible to different constraint types and has a much smaller impact on the generation quality and speed because it does not modify the decoding procedure. Additionally, InstructCTG allows the model to adapt to new constraints without re-training through the use of few-shot task generalization and in-context learning abilities of instruction-tuned language models.
Abstract:Textbooks are the primary vehicle for delivering quality education to students. It has been shown that explanatory or illustrative visuals play a key role in the retention, comprehension and the general transfer of knowledge. However, many textbooks, especially in the developing world, are low quality and lack interesting visuals to support student learning. In this paper, we investigate the effectiveness of vision-language models to automatically enhance textbooks with images from the web. Specifically, we collect a dataset of e-textbooks from one of the largest free online publishers in the world. We rigorously analyse the dataset, and use the resulting analysis to motivate a task that involves retrieving and appropriately assigning web images to textbooks, which we frame as a novel optimization problem. Through a crowd-sourced evaluation, we verify that (1) while the original textbook images are rated higher, automatically assigned ones are not far behind, and (2) the choice of the optimization problem matters. We release the dataset of textbooks with an associated image bank to spur further research in this area.
Abstract:Word embeddings that map words into a fixed-dimensional vector space are the backbone of modern NLP. Most word embedding methods encode semantic information. However, phonetic information, which is important for some tasks, is often overlooked. In this work, we develop several novel methods which leverage articulatory features to build phonetically informed word embeddings, and present a set of phonetic word embeddings to encourage their community development, evaluation and use. While several methods for learning phonetic word embeddings already exist, there is a lack of consistency in evaluating their effectiveness. Thus, we also proposes several ways to evaluate both intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and extrinsic performances, such as rhyme and cognate detection and sound analogies. We hope that our suite of tasks will promote reproducibility and provide direction for future research on phonetic word embeddings.
Abstract:Ideally, dialogue systems should generate responses that are faithful to the knowledge contained in relevant documents. However, many models generate hallucinated responses instead that contradict it or contain unverifiable information. To mitigate such undesirable behaviour, it has been proposed to fine-tune a `negative expert' on negative examples and subtract its parameters from those of a pre-trained model. However, intuitively, this does not take into account that some parameters are more responsible than others in causing hallucinations. Thus, we propose to weigh their individual importance via (an approximation of) the Fisher Information matrix, which measures the uncertainty of their estimate. We call this method Elastic Weight Removal (EWR). We evaluate our method -- using different variants of Flan-T5 as a backbone language model -- on multiple datasets for information-seeking dialogue generation and compare our method with state-of-the-art techniques for faithfulness, such as CTRL, Quark, DExperts, and Noisy Channel reranking. Extensive automatic and human evaluation shows that EWR systematically increases faithfulness at minor costs in terms of other metrics. However, we notice that only discouraging hallucinations may increase extractiveness, i.e. shallow copy-pasting of document spans, which can be undesirable. Hence, as a second main contribution, we show that our method can be extended to simultaneously discourage hallucinations and extractive responses. We publicly release the code for reproducing EWR and all baselines.
Abstract:Conversational tutoring systems (CTSs) aim to help students master educational material with natural language interaction in the form of a dialog. CTSs have become a key pillar in educational data mining research. A key challenge in CTSs is to engage the student in the conversation while exposing them to a diverse set of teaching strategies, akin to a human teacher, thereby, helping them learn in the process. Different from previous work that generates responses given the strategies as input, we propose to jointly predict teaching strategies and generate tutor responses accordingly, which fits a more realistic application scenario. We benchmark several competitive models on three dialog tutoring datasets and propose a unified framework that combines teaching response generation and pedagogical strategy prediction, where a self-distillation mechanism is adopted to guide the teaching strategy learning and facilitate tutor response generation. Our experiments and analyses shed light on how teaching strategies affect dialog tutoring.
Abstract:Machine translation quality estimation (QE) predicts human judgements of a translation hypothesis without seeing the reference. State-of-the-art QE systems based on pretrained language models have been achieving remarkable correlations with human judgements yet they are computationally heavy and require human annotations, which are slow and expensive to create. To address these limitations, we define the problem of metric estimation (ME) where one predicts the automated metric scores also without the reference. We show that even without access to the reference, our model can estimate automated metrics ($\rho$=60% for BLEU, $\rho$=51% for other metrics) at the sentence-level. Because automated metrics correlate with human judgements, we can leverage the ME task for pre-training a QE model. For the QE task, we find that pre-training on TER is better ($\rho$=23%) than training for scratch ($\rho$=20%).
Abstract:Designing dialog tutors has been challenging as it involves modeling the diverse and complex pedagogical strategies employed by human tutors. Although there have been significant recent advances in neural conversational systems using large language models and growth in available dialog corpora, dialog tutoring has largely remained unaffected by these advances. In this paper, we rigorously analyze various generative language models on two dialog tutoring datasets for language learning using automatic and human evaluations to understand the new opportunities brought by these advances as well as the challenges we must overcome to build models that would be usable in real educational settings. We find that although current approaches can model tutoring in constrained learning scenarios when the number of concepts to be taught and possible teacher strategies are small, they perform poorly in less constrained scenarios. Our human quality evaluation shows that both models and ground-truth annotations exhibit low performance in terms of equitable tutoring, which measures learning opportunities for students and how engaging the dialog is. To understand the behavior of our models in a real tutoring setting, we conduct a user study using expert annotators and find a significantly large number of model reasoning errors in 45% of conversations. Finally, we connect our findings to outline future work.