Alert button
Picture for Edoardo M. Ponti

Edoardo M. Ponti

Alert button

Are Large Language Models Temporally Grounded?

Nov 16, 2023
Yifu Qiu, Zheng Zhao, Yftah Ziser, Anna Korhonen, Edoardo M. Ponti, Shay B. Cohen

Are Large language models (LLMs) temporally grounded? Since LLMs cannot perceive and interact with the environment, it is impossible to answer this question directly. Instead, we provide LLMs with textual narratives and probe them with respect to their common-sense knowledge of the structure and duration of events, their ability to order events along a timeline, and self-consistency within their temporal model (e.g., temporal relations such as after and before are mutually exclusive for any pair of events). We evaluate state-of-the-art LLMs (such as LLaMA 2 and GPT-4) on three tasks reflecting these abilities. Generally, we find that LLMs lag significantly behind both human performance as well as small-scale, specialised LMs. In-context learning, instruction tuning, and chain-of-thought prompting reduce this gap only to a limited degree. Crucially, LLMs struggle the most with self-consistency, displaying incoherent behaviour in at least 27.23% of their predictions. Contrary to expectations, we also find that scaling the model size does not guarantee positive gains in performance. To explain these results, we study the sources from which LLMs may gather temporal information: we find that sentence ordering in unlabelled texts, available during pre-training, is only weakly correlated with event ordering. Moreover, public instruction tuning mixtures contain few temporal tasks. Hence, we conclude that current LLMs lack a consistent temporal model of textual narratives. Code, datasets, and LLM outputs are available at https://github.com/yfqiu-nlp/temporal-llms.

Viaarxiv icon

Detecting and Mitigating Hallucinations in Multilingual Summarisation

May 23, 2023
Yifu Qiu, Yftah Ziser, Anna Korhonen, Edoardo M. Ponti, Shay B. Cohen

Figure 1 for Detecting and Mitigating Hallucinations in Multilingual Summarisation
Figure 2 for Detecting and Mitigating Hallucinations in Multilingual Summarisation
Figure 3 for Detecting and Mitigating Hallucinations in Multilingual Summarisation
Figure 4 for Detecting and Mitigating Hallucinations in Multilingual Summarisation

Hallucinations pose a significant challenge to the reliability of neural models for abstractive summarisation. While automatically generated summaries may be fluent, they often lack faithfulness to the original document. This issue becomes even more pronounced in low-resource settings, such as cross-lingual transfer. With the existing faithful metrics focusing on English, even measuring the extent of this phenomenon in cross-lingual settings is hard. To address this, we first develop a novel metric, mFACT, evaluating the faithfulness of non-English summaries, leveraging translation-based transfer from multiple English faithfulness metrics. We then propose a simple but effective method to reduce hallucinations with a cross-lingual transfer, which weighs the loss of each training example by its faithfulness score. Through extensive experiments in multiple languages, we demonstrate that mFACT is the metric that is most suited to detect hallucinations. Moreover, we find that our proposed loss weighting method drastically increases both performance and faithfulness according to both automatic and human evaluation when compared to strong baselines for cross-lingual transfer such as MAD-X. Our code and dataset are available at https://github.com/yfqiu-nlp/mfact-summ.

Viaarxiv icon

Elastic Weight Removal for Faithful and Abstractive Dialogue Generation

Mar 30, 2023
Nico Daheim, Nouha Dziri, Mrinmaya Sachan, Iryna Gurevych, Edoardo M. Ponti

Figure 1 for Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Figure 2 for Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Figure 3 for Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Figure 4 for Elastic Weight Removal for Faithful and Abstractive Dialogue Generation

Ideally, dialogue systems should generate responses that are faithful to the knowledge contained in relevant documents. However, many models generate hallucinated responses instead that contradict it or contain unverifiable information. To mitigate such undesirable behaviour, it has been proposed to fine-tune a `negative expert' on negative examples and subtract its parameters from those of a pre-trained model. However, intuitively, this does not take into account that some parameters are more responsible than others in causing hallucinations. Thus, we propose to weigh their individual importance via (an approximation of) the Fisher Information matrix, which measures the uncertainty of their estimate. We call this method Elastic Weight Removal (EWR). We evaluate our method -- using different variants of Flan-T5 as a backbone language model -- on multiple datasets for information-seeking dialogue generation and compare our method with state-of-the-art techniques for faithfulness, such as CTRL, Quark, DExperts, and Noisy Channel reranking. Extensive automatic and human evaluation shows that EWR systematically increases faithfulness at minor costs in terms of other metrics. However, we notice that only discouraging hallucinations may increase extractiveness, i.e. shallow copy-pasting of document spans, which can be undesirable. Hence, as a second main contribution, we show that our method can be extended to simultaneously discourage hallucinations and extractive responses. We publicly release the code for reproducing EWR and all baselines.

Viaarxiv icon

Efficient Transformers with Dynamic Token Pooling

Nov 17, 2022
Piotr Nawrot, Jan Chorowski, Adrian Łańcucki, Edoardo M. Ponti

Figure 1 for Efficient Transformers with Dynamic Token Pooling
Figure 2 for Efficient Transformers with Dynamic Token Pooling
Figure 3 for Efficient Transformers with Dynamic Token Pooling
Figure 4 for Efficient Transformers with Dynamic Token Pooling

Transformers achieve unrivalled performance in modelling language, but remain inefficient in terms of memory and time complexity. A possible remedy is to reduce the sequence length in the intermediate layers by pooling fixed-length segments of tokens. Nevertheless, natural units of meaning, such as words or phrases, display varying sizes. To address this mismatch, we equip language models with a dynamic-pooling mechanism, which predicts segment boundaries in an autoregressive fashion. We compare several methods to infer boundaries, including end-to-end learning through stochastic re-parameterisation, supervised learning (based on segmentations from subword tokenizers or spikes in conditional entropy), as well as linguistically motivated boundaries. We perform character-level evaluation on texts from multiple datasets and morphologically diverse languages. The results demonstrate that dynamic pooling, which jointly segments and models language, is often both faster and more accurate than vanilla Transformers and fixed-length pooling within the same computational budget.

Viaarxiv icon

UniMorph 4.0: Universal Morphology

May 10, 2022
Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. McCarthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, Ekaterina Vylomova

Figure 1 for UniMorph 4.0: Universal Morphology
Figure 2 for UniMorph 4.0: Universal Morphology
Figure 3 for UniMorph 4.0: Universal Morphology
Figure 4 for UniMorph 4.0: Universal Morphology

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

* LREC 2022; The first two authors made equal contributions 
Viaarxiv icon

FaithDial: A Faithful Benchmark for Information-Seeking Dialogue

Apr 22, 2022
Nouha Dziri, Ehsan Kamalloo, Sivan Milton, Osmar Zaiane, Mo Yu, Edoardo M. Ponti, Siva Reddy

Figure 1 for FaithDial: A Faithful Benchmark for Information-Seeking Dialogue
Figure 2 for FaithDial: A Faithful Benchmark for Information-Seeking Dialogue
Figure 3 for FaithDial: A Faithful Benchmark for Information-Seeking Dialogue
Figure 4 for FaithDial: A Faithful Benchmark for Information-Seeking Dialogue

The goal of information-seeking dialogue is to respond to seeker queries with natural language utterances that are grounded on knowledge sources. However, dialogue systems often produce unsupported utterances, a phenomenon known as hallucination. Dziri et al. (2022)'s investigation of hallucinations has revealed that existing knowledge-grounded benchmarks are contaminated with hallucinated responses at an alarming level (>60% of the responses) and models trained on this data amplify hallucinations even further (>80% of the responses). To mitigate this behavior, we adopt a data-centric solution and create FaithDial, a new benchmark for hallucination-free dialogues, by editing hallucinated responses in the Wizard of Wikipedia (WoW) benchmark. We observe that FaithDial is more faithful than WoW while also maintaining engaging conversations. We show that FaithDial can serve as a training signal for: i) a hallucination critic, which discriminates whether an utterance is faithful or not, and boosts the performance by 21.1 F1 score on the BEGIN benchmark compared to existing datasets for dialogue coherence; ii) high-quality dialogue generation. We benchmark a series of state-of-the-art models and propose an auxiliary contrastive objective that achieves the highest level of faithfulness and abstractiveness based on several automated metrics. Further, we find that the benefits of FaithDial generalize to zero-shot transfer on other datasets, such as CMU-Dog and TopicalChat. Finally, human evaluation reveals that responses generated by models trained on FaithDial are perceived as more interpretable, cooperative, and engaging.

* 19 pages 
Viaarxiv icon

Combining Modular Skills in Multitask Learning

Mar 01, 2022
Edoardo M. Ponti, Alessandro Sordoni, Yoshua Bengio, Siva Reddy

Figure 1 for Combining Modular Skills in Multitask Learning
Figure 2 for Combining Modular Skills in Multitask Learning
Figure 3 for Combining Modular Skills in Multitask Learning
Figure 4 for Combining Modular Skills in Multitask Learning

A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks. In this work, we assume that each task is associated with a subset of latent discrete skills from a (potentially small) inventory. In turn, skills correspond to parameter-efficient (sparse / low-rank) model parameterisations. By jointly learning these and a task-skill allocation matrix, the network for each task is instantiated as the average of the parameters of active skills. To favour non-trivial soft partitions of skills across tasks, we experiment with a series of inductive biases, such as an Indian Buffet Process prior and a two-speed learning rate. We evaluate our latent-skill model on two main settings: 1) multitask reinforcement learning for grounded instruction following on 8 levels of the BabyAI platform; and 2) few-shot adaptation of pre-trained text-to-text generative models on CrossFit, a benchmark comprising 160 NLP tasks. We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning, compared to baselines with fully shared, task-specific, or conditionally generated parameters where knowledge is entangled across tasks. In addition, we show how discrete skills help interpretability, as they yield an explicit hierarchy of tasks.

Viaarxiv icon

AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages with Adversarial Examples

Apr 17, 2021
Qianchu Liu, Edoardo M. Ponti, Diana McCarthy, Ivan Vulić, Anna Korhonen

Figure 1 for AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages with Adversarial Examples
Figure 2 for AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages with Adversarial Examples
Figure 3 for AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages with Adversarial Examples
Figure 4 for AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages with Adversarial Examples

Capturing word meaning in context and distinguishing between correspondences and variations across languages is key to building successful multilingual and cross-lingual text representation models. However, existing multilingual evaluation datasets that evaluate lexical semantics "in-context" have various limitations, in particular, (1) their language coverage is restricted to high-resource languages and skewed in favor of only a few language families and areas, (2) a design that makes the task solvable via superficial cues, which results in artificially inflated (and sometimes super-human) performances of pretrained encoders, on many target languages, which limits their usefulness for model probing and diagnostics, and (3) no support for cross-lingual evaluation. In order to address these gaps, we present AM2iCo, Adversarial and Multilingual Meaning in Context, a wide-coverage cross-lingual and multilingual evaluation set; it aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts for 14 language pairs. We conduct a series of experiments in a wide range of setups and demonstrate the challenging nature of AM2iCo. The results reveal that current SotA pretrained encoders substantially lag behind human performance, and the largest gaps are observed for low-resource languages and languages dissimilar to English.

Viaarxiv icon

Verb Knowledge Injection for Multilingual Event Processing

Dec 31, 2020
Olga Majewska, Ivan Vulić, Goran Glavaš, Edoardo M. Ponti, Anna Korhonen

Figure 1 for Verb Knowledge Injection for Multilingual Event Processing
Figure 2 for Verb Knowledge Injection for Multilingual Event Processing
Figure 3 for Verb Knowledge Injection for Multilingual Event Processing
Figure 4 for Verb Knowledge Injection for Multilingual Event Processing

In parallel to their overwhelming success across NLP tasks, language ability of deep Transformer networks, pretrained via language modeling (LM) objectives has undergone extensive scrutiny. While probing revealed that these models encode a range of syntactic and semantic properties of a language, they are still prone to fall back on superficial cues and simple heuristics to solve downstream tasks, rather than leverage deeper linguistic knowledge. In this paper, we target one such area of their deficiency, verbal reasoning. We investigate whether injecting explicit information on verbs' semantic-syntactic behaviour improves the performance of LM-pretrained Transformers in event extraction tasks -- downstream tasks for which accurate verb processing is paramount. Concretely, we impart the verb knowledge from curated lexical resources into dedicated adapter modules (dubbed verb adapters), allowing it to complement, in downstream tasks, the language knowledge obtained during LM-pretraining. We first demonstrate that injecting verb knowledge leads to performance gains in English event extraction. We then explore the utility of verb adapters for event extraction in other languages: we investigate (1) zero-shot language transfer with multilingual Transformers as well as (2) transfer via (noisy automatic) translation of English verb-based lexical constraints. Our results show that the benefits of verb knowledge injection indeed extend to other languages, even when verb adapters are trained on noisily translated constraints.

* 19 pages, 1 figure, 8 tables 
Viaarxiv icon

Emergent Communication Pretraining for Few-Shot Machine Translation

Nov 02, 2020
Yaoyiran Li, Edoardo M. Ponti, Ivan Vulić, Anna Korhonen

Figure 1 for Emergent Communication Pretraining for Few-Shot Machine Translation
Figure 2 for Emergent Communication Pretraining for Few-Shot Machine Translation
Figure 3 for Emergent Communication Pretraining for Few-Shot Machine Translation
Figure 4 for Emergent Communication Pretraining for Few-Shot Machine Translation

While state-of-the-art models that rely upon massively multilingual pretrained encoders achieve sample efficiency in downstream applications, they still require abundant amounts of unlabelled text. Nevertheless, most of the world's languages lack such resources. Hence, we investigate a more radical form of unsupervised knowledge transfer in the absence of linguistic data. In particular, for the first time we pretrain neural networks via emergent communication from referential games. Our key assumption is that grounding communication on images---as a crude approximation of real-world environments---inductively biases the model towards learning natural languages. On the one hand, we show that this substantially benefits machine translation in few-shot settings. On the other hand, this also provides an extrinsic evaluation protocol to probe the properties of emergent languages ex vitro. Intuitively, the closer they are to natural languages, the higher the gains from pretraining on them should be. For instance, in this work we measure the influence of communication success and maximum sequence length on downstream performances. Finally, we introduce a customised adapter layer and annealing strategies for the regulariser of maximum-a-posteriori inference during fine-tuning. These turn out to be crucial to facilitate knowledge transfer and prevent catastrophic forgetting. Compared to a recurrent baseline, our method yields gains of $59.0\%$$\sim$$147.6\%$ in BLEU score with only $500$ NMT training instances and $65.1\%$$\sim$$196.7\%$ with $1,000$ NMT training instances across four language pairs. These proof-of-concept results reveal the potential of emergent communication pretraining for both natural language processing tasks in resource-poor settings and extrinsic evaluation of artificial languages.

Viaarxiv icon