Abstract:Recent work has shown that language models (LMs) have strong multi-step (i.e., procedural) reasoning capabilities. However, it is unclear whether LMs perform these tasks by cheating with answers memorized from pretraining corpus, or, via a multi-step reasoning mechanism. In this paper, we try to answer this question by exploring a mechanistic interpretation of LMs for multi-step reasoning tasks. Concretely, we hypothesize that the LM implicitly embeds a reasoning tree resembling the correct reasoning process within it. We test this hypothesis by introducing a new probing approach (called MechanisticProbe) that recovers the reasoning tree from the model's attention patterns. We use our probe to analyze two LMs: GPT-2 on a synthetic task (k-th smallest element), and LLaMA on two simple language-based reasoning tasks (ProofWriter & AI2 Reasoning Challenge). We show that MechanisticProbe is able to detect the information of the reasoning tree from the model's attentions for most examples, suggesting that the LM indeed is going through a process of multi-step reasoning within its architecture in many cases.
Abstract:In a human-AI collaboration, users build a mental model of the AI system based on its reliability and how it presents its decision, e.g. its presentation of system confidence and an explanation of the output. Modern NLP systems are often uncalibrated, resulting in confidently incorrect predictions that undermine user trust. In order to build trustworthy AI, we must understand how user trust is developed and how it can be regained after potential trust-eroding events. We study the evolution of user trust in response to these trust-eroding events using a betting game. We find that even a few incorrect instances with inaccurate confidence estimates damage user trust and performance, with very slow recovery. We also show that this degradation in trust reduces the success of human-AI collaboration and that different types of miscalibration -- unconfidently correct and confidently incorrect -- have different negative effects on user trust. Our findings highlight the importance of calibration in user-facing AI applications and shed light on what aspects help users decide whether to trust the AI system.
Abstract:*Data Synthesis* is a promising way to train a small model with very little labeled data. One approach for data synthesis is to leverage the rich knowledge from large language models to synthesize pseudo training examples for small models, making it possible to achieve both data and compute efficiency at the same time. However, a key challenge in data synthesis is that the synthesized dataset often suffers from a large distributional discrepancy from the *real task* data distribution. Thus, in this paper, we propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap by iteratively extrapolating the errors made by a small model trained on the synthesized dataset on a small real-world validation dataset using a large language model. Extensive experiments on multiple NLP tasks show that our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data, resulting in significant improvement compared to several baselines: 9.48% improvement compared to ZeroGen and 2.73% compared to GoldGen, and at most 15.17% improvement compared to the small model trained on human-annotated data.
Abstract:Recent advances on large language models (LLMs) enable researchers and developers to build autonomous language agents that can automatically solve various tasks and interact with environments, humans, and other agents using natural language interfaces. We consider language agents as a promising direction towards artificial general intelligence and release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience. Agents is carefully engineered to support important features including planning, memory, tool usage, multi-agent communication, and fine-grained symbolic control. Agents is user-friendly as it enables non-specialists to build, customize, test, tune, and deploy state-of-the-art autonomous language agents without much coding. The library is also research-friendly as its modularized design makes it easily extensible for researchers. Agents is available at https://github.com/aiwaves-cn/agents.
Abstract:Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method. BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a $\frac{1}{{\sigma(\boldsymbol{\mu}^\star)}}(1-e^{-{\sigma(\boldsymbol{\mu}^\star)}})$-approximation of an optimal merge sequence, where ${\sigma(\boldsymbol{\mu}^\star)}$ is the total backward curvature with respect to the optimal merge sequence $\boldsymbol{\mu}^\star$. Empirically the lower bound of the approximation is $\approx 0.37$. We provide a faster implementation of BPE which improves the runtime complexity from $\mathcal{O}\left(N M\right)$ to $\mathcal{O}\left(N \log M\right)$, where $N$ is the sequence length and $M$ is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.
Abstract:Subword tokenization is a key part of many NLP pipelines. However, little is known about why some tokenizer and hyperparameter combinations lead to better downstream model performance than others. We propose that good tokenizers lead to \emph{efficient} channel usage, where the channel is the means by which some input is conveyed to the model and efficiency can be quantified in information-theoretic terms as the ratio of the Shannon entropy to the maximum possible entropy of the token distribution. Yet, an optimal encoding according to Shannon entropy assigns extremely long codes to low-frequency tokens and very short codes to high-frequency tokens. Defining efficiency in terms of R\'enyi entropy, on the other hand, penalizes distributions with either very high or very low-frequency tokens. In machine translation, we find that across multiple tokenizers, the R\'enyi entropy with $\alpha = 2.5$ has a very strong correlation with \textsc{Bleu}: $0.78$ in comparison to just $-0.32$ for compressed length.
Abstract:Causal inference is one of the hallmarks of human intelligence. While the field of CausalNLP has attracted much interest in the recent years, existing causal inference datasets in NLP primarily rely on discovering causality from empirical knowledge (e.g., commonsense knowledge). In this work, we propose the first benchmark dataset to test the pure causal inference skills of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables. We curate a large-scale dataset of more than 400K samples, on which we evaluate seventeen existing LLMs. Through our experiments, we identify a key shortcoming of LLMs in terms of their causal inference skills, and show that these models achieve almost close to random performance on the task. This shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find that these models still fail to generalize -- they can only perform causal inference in in-distribution settings when variable names and textual expressions used in the queries are similar to those in the training set, but fail in out-of-distribution settings generated by perturbing these queries. Corr2Cause is a challenging task for LLMs, and would be helpful in guiding future research on improving LLMs' pure reasoning skills and generalizability. Our data is at https://huggingface.co/datasets/causalnlp/corr2cause. Our code is at https://github.com/causalNLP/corr2cause.
Abstract:Solving math story problems is a complex task for students and NLP models alike, requiring them to understand the world as described in the story and reason over it to compute an answer. Recent years have seen impressive performance on automatically solving these problems with large pre-trained language models and innovative techniques to prompt them. However, it remains unclear if these models possess accurate representations of mathematical concepts. This leads to lack of interpretability and trustworthiness which impedes their usefulness in various applications. In this paper, we consolidate previous work on categorizing and representing math story problems and develop MathWorld, which is a graph-based semantic formalism specific for the domain of math story problems. With MathWorld, we can assign world models to math story problems which represent the situations and actions introduced in the text and their mathematical relationships. We combine math story problems from several existing datasets and annotate a corpus of 1,019 problems and 3,204 logical forms with MathWorld. Using this data, we demonstrate the following use cases of MathWorld: (1) prompting language models with synthetically generated question-answer pairs to probe their reasoning and world modeling abilities, and (2) generating new problems by using the world models as a design space.
Abstract:The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) and its most recent language-complete instantiation (LARC) has been postulated as an important step towards general AI. Yet, even state-of-the-art machine learning models struggle to achieve meaningful performance on these problems, falling behind non-learning based approaches. We argue that solving these tasks requires extreme generalization that can only be achieved by proper accounting for core knowledge priors. As a step towards this goal, we focus on geometry priors and introduce LatFormer, a model that incorporates lattice symmetry priors in attention masks. We show that, for any transformation of the hypercubic lattice, there exists a binary attention mask that implements that group action. Hence, our study motivates a modification to the standard attention mechanism, where attention weights are scaled using soft masks generated by a convolutional network. Experiments on synthetic geometric reasoning show that LatFormer requires 2 orders of magnitude fewer data than standard attention and transformers. Moreover, our results on ARC and LARC tasks that incorporate geometric priors provide preliminary evidence that these complex datasets do not lie out of the reach of deep learning models.
Abstract:Adaptive learning aims to provide customized educational activities (e.g., exercises) to address individual learning needs. However, manual construction and delivery of such activities is a laborious process. Thus, in this paper, we study a novel task of adaptive and personalized exercise generation for online language learning. To this end, we combine a knowledge tracing model that estimates each student's evolving knowledge states from their learning history and a controlled text generation model that generates exercise sentences based on the student's current estimated knowledge state and instructor requirements of desired properties (e.g., domain knowledge and difficulty). We train and evaluate our model on real-world learner interaction data from Duolingo and demonstrate that LMs guided by student states can generate superior exercises. Then, we discuss the potential use of our model in educational applications using various simulations. These simulations show that our model can adapt to students' individual abilities and can facilitate their learning efficiency by personalizing learning sequences.