Abstract:Neural image codecs achieve higher compression ratios than traditional hand-crafted methods such as PNG or JPEG-XL, but often incur substantial computational overhead, limiting their deployment on energy-constrained devices such as smartphones, cameras, and drones. We propose Grayscale Image Compression with Differentiable Logic Circuits (GIC-DLC), a hardware-aware codec where we train lookup tables to combine the flexibility of neural networks with the efficiency of Boolean operations. Experiments on grayscale benchmark datasets show that GIC-DLC outperforms traditional codecs in compression efficiency while allowing substantial reductions in energy consumption and latency. These results demonstrate that learned compression can be hardware-friendly, offering a promising direction for low-power image compression on edge devices.
Abstract:The rapid advancement of Large Language Models (LLMs) has sparked intense debate regarding their ability to perceive and interpret complex socio-political landscapes. In this study, we undertake an exploration of decision-making processes and inherent biases within LLMs, exemplified by ChatGPT, specifically contextualizing our analysis within political debates. We aim not to critique or validate LLMs' values, but rather to discern how they interpret and adjudicate "good arguments." By applying Activity Dependency Networks (ADNs), we extract the LLMs' implicit criteria for such assessments and illustrate how normative values influence these perceptions. We discuss the consequences of our findings for human-AI alignment and bias mitigation. Our code and data at https://github.com/david-jenny/LLM-Political-Study.