Zhejiang University
Abstract:Deep cooperative multi-agent reinforcement learning has demonstrated its remarkable success over a wide spectrum of complex control tasks. However, recent advances in multi-agent learning mainly focus on value decomposition while leaving entity interactions still intertwined, which easily leads to over-fitting on noisy interactions between entities. In this work, we introduce a novel interactiOn Pattern disenTangling (OPT) method, to disentangle not only the joint value function into agent-wise value functions for decentralized execution, but also the entity interactions into interaction prototypes, each of which represents an underlying interaction pattern within a sub-group of the entities. OPT facilitates filtering the noisy interactions between irrelevant entities and thus significantly improves generalizability as well as interpretability. Specifically, OPT introduces a sparse disagreement mechanism to encourage sparsity and diversity among discovered interaction prototypes. Then the model selectively restructures these prototypes into a compact interaction pattern by an aggregator with learnable weights. To alleviate the training instability issue caused by partial observability, we propose to maximize the mutual information between the aggregation weights and the history behaviors of each agent. Experiments on both single-task and multi-task benchmarks demonstrate that the proposed method yields results superior to the state-of-the-art counterparts. Our code will be made publicly available.
Abstract:Despite the promising results achieved, state-of-the-art interactive reinforcement learning schemes rely on passively receiving supervision signals from advisor experts, in the form of either continuous monitoring or pre-defined rules, which inevitably result in a cumbersome and expensive learning process. In this paper, we introduce a novel initiative advisor-in-the-loop actor-critic framework, termed as Ask-AC, that replaces the unilateral advisor-guidance mechanism with a bidirectional learner-initiative one, and thereby enables a customized and efficacious message exchange between learner and advisor. At the heart of Ask-AC are two complementary components, namely action requester and adaptive state selector, that can be readily incorporated into various discrete actor-critic architectures. The former component allows the agent to initiatively seek advisor intervention in the presence of uncertain states, while the latter identifies the unstable states potentially missed by the former especially when environment changes, and then learns to promote the ask action on such states. Experimental results on both stationary and non-stationary environments and across different actor-critic backbones demonstrate that the proposed framework significantly improves the learning efficiency of the agent, and achieves the performances on par with those obtained by continuous advisor monitoring.
Abstract:This paper studies the algorithmic stability and generalizability of decentralized stochastic gradient descent (D-SGD). We prove that the consensus model learned by D-SGD is $\mathcal{O}{(m/N+1/m+\lambda^2)}$-stable in expectation in the non-convex non-smooth setting, where $N$ is the total sample size of the whole system, $m$ is the worker number, and $1-\lambda$ is the spectral gap that measures the connectivity of the communication topology. These results then deliver an $\mathcal{O}{(1/N+{({(m^{-1}\lambda^2)}^{\frac{\alpha}{2}}+ m^{-\alpha})}/{N^{1-\frac{\alpha}{2}}})}$ in-average generalization bound, which is non-vacuous even when $\lambda$ is closed to $1$, in contrast to vacuous as suggested by existing literature on the projected version of D-SGD. Our theory indicates that the generalizability of D-SGD has a positive correlation with the spectral gap, and can explain why consensus control in initial training phase can ensure better generalization. Experiments of VGG-11 and ResNet-18 on CIFAR-10, CIFAR-100 and Tiny-ImageNet justify our theory. To our best knowledge, this is the first work on the topology-aware generalization of vanilla D-SGD. Code is available at https://github.com/Raiden-Zhu/Generalization-of-DSGD.
Abstract:Vanilla unsupervised domain adaptation methods tend to optimize the model with fixed neural architecture, which is not very practical in real-world scenarios since the target data is usually processed by different resource-limited devices. It is therefore of great necessity to facilitate architecture adaptation across various devices. In this paper, we introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank, from which models of different capacities can be sampled to accommodate different accuracy-efficiency trade-offs. The main challenge in this framework lies in simultaneously boosting the adaptation performance of numerous models in the model bank. To tackle this problem, we develop a Stochastic EnsEmble Distillation method to fully exploit the complementary knowledge in the model bank for inter-model interaction. Nevertheless, considering the optimization conflict between inter-model interaction and intra-model adaptation, we augment the existing bi-classifier domain confusion architecture into an Optimization-Separated Tri-Classifier counterpart. After optimizing the model bank, architecture adaptation is leveraged via our proposed Unsupervised Performance Evaluation Metric. Under various resource constraints, our framework surpasses other competing approaches by a very large margin on multiple benchmarks. It is also worth emphasizing that our framework can preserve the performance improvement against the source-only model even when the computing complexity is reduced to $1/64$. Code will be available at https://github.com/hikvision-research/SlimDA.
Abstract:Semi-supervised object detection has made significant progress with the development of mean teacher driven self-training. Despite the promising results, the label mismatch problem is not yet fully explored in the previous works, leading to severe confirmation bias during self-training. In this paper, we delve into this problem and propose a simple yet effective LabelMatch framework from two different yet complementary perspectives, i.e., distribution-level and instance-level. For the former one, it is reasonable to approximate the class distribution of the unlabeled data from that of the labeled data according to Monte Carlo Sampling. Guided by this weakly supervision cue, we introduce a re-distribution mean teacher, which leverages adaptive label-distribution-aware confidence thresholds to generate unbiased pseudo labels to drive student learning. For the latter one, there exists an overlooked label assignment ambiguity problem across teacher-student models. To remedy this issue, we present a novel label assignment mechanism for self-training framework, namely proposal self-assignment, which injects the proposals from student into teacher and generates accurate pseudo labels to match each proposal in the student model accordingly. Experiments on both MS-COCO and PASCAL-VOC datasets demonstrate the considerable superiority of our proposed framework to other state-of-the-arts. Code will be available at https://github.com/hikvision-research/SSOD.
Abstract:Multi-object tracking (MOT) aims to associate target objects across video frames in order to obtain entire moving trajectories. With the advancement of deep neural networks and the increasing demand for intelligent video analysis, MOT has gained significantly increased interest in the computer vision community. Embedding methods play an essential role in object location estimation and temporal identity association in MOT. Unlike other computer vision tasks, such as image classification, object detection, re-identification, and segmentation, embedding methods in MOT have large variations, and they have never been systematically analyzed and summarized. In this survey, we first conduct a comprehensive overview with in-depth analysis for embedding methods in MOT from seven different perspectives, including patch-level embedding, single-frame embedding, cross-frame joint embedding, correlation embedding, sequential embedding, tracklet embedding, and cross-track relational embedding. We further summarize the existing widely used MOT datasets and analyze the advantages of existing state-of-the-art methods according to their embedding strategies. Finally, some critical yet under-investigated areas and future research directions are discussed.
Abstract:The real-time transient stability assessment (TSA) plays a critical role in the secure operation of the power system. Although the classic numerical integration method, \textit{i.e.} time-domain simulation (TDS), has been widely used in industry practice, it is inevitably trapped in a high computational complexity due to the high latitude sophistication of the power system. In this work, a data-driven power system estimation method is proposed to quickly predict the stability of the power system before TDS reaches the end of simulating time windows, which can reduce the average simulation time of stability assessment without loss of accuracy. As the topology of the power system is in the form of graph structure, graph neural network based representation learning is naturally suitable for learning the status of the power system. Motivated by observing the distribution information of crucial active power and reactive power on the power system's bus nodes, we thus propose a distribution-aware learning~(DAL) module to explore an informative graph representation vector for describing the status of a power system. Then, TSA is re-defined as a binary classification task, and the stability of the system is determined directly from the resulting graph representation without numerical integration. Finally, we apply our method to the online TSA task. The case studies on the IEEE 39-bus system and Polish 2383-bus system demonstrate the effectiveness of our proposed method.
Abstract:Deep learning has recently achieved remarkable performance in image classification tasks, which depends heavily on massive annotation. However, the classification mechanism of existing deep learning models seems to contrast to humans' recognition mechanism. With only a glance at an image of the object even unknown type, humans can quickly and precisely find other same category objects from massive images, which benefits from daily recognition of various objects. In this paper, we attempt to build a generalizable framework that emulates the humans' recognition mechanism in the image classification task, hoping to improve the classification performance on unseen categories with the support of annotations of other categories. Specifically, we investigate a new task termed Comparison Knowledge Translation (CKT). Given a set of fully labeled categories, CKT aims to translate the comparison knowledge learned from the labeled categories to a set of novel categories. To this end, we put forward a Comparison Classification Translation Network (CCT-Net), which comprises a comparison classifier and a matching discriminator. The comparison classifier is devised to classify whether two images belong to the same category or not, while the matching discriminator works together in an adversarial manner to ensure whether classified results match the truth. Exhaustive experiments show that CCT-Net achieves surprising generalization ability on unseen categories and SOTA performance on target categories.
Abstract:Knowledge distillation (KD) has become a well established paradigm for compressing deep neural networks. The typical way of conducting knowledge distillation is to train the student network under the supervision of the teacher network to harness the knowledge at one or multiple spots (i.e., layers) in the teacher network. The distillation spots, once specified, will not change for all the training samples, throughout the whole distillation process. In this work, we argue that distillation spots should be adaptive to training samples and distillation epochs. We thus propose a new distillation strategy, termed spot-adaptive KD (SAKD), to adaptively determine the distillation spots in the teacher network per sample, at every training iteration during the whole distillation period. As SAKD actually focuses on "where to distill" instead of "what to distill" that is widely investigated by most existing works, it can be seamlessly integrated into existing distillation methods to further improve their performance. Extensive experiments with 10 state-of-the-art distillers are conducted to demonstrate the effectiveness of SAKD for improving their distillation performance, under both homogeneous and heterogeneous distillation settings. Code is available at https://github.com/zju-vipa/spot-adaptive-pytorch
Abstract:Convolutional Neural Network (CNN), which mimics human visual perception mechanism, has been successfully used in many computer vision areas. Some psychophysical studies show that the visual perception mechanism synchronously processes the form, color, movement, depth, etc., in the initial stage [7,20] and then integrates all information for final recognition [38]. What's more, the human visual system [20] contains different subdivisions or different tasks. Inspired by the above visual perception mechanism, we investigate a new task, termed as Model Disassembling and Assembling (MDA-Task), which can disassemble the deep models into independent parts and assemble those parts into a new deep model without performance cost like playing LEGO toys. To this end, we propose a feature route attribution technique (FRAT) for disassembling CNN classifiers in this paper. In FRAT, the positive derivatives of predicted class probability w.r.t. the feature maps are adopted to locate the critical features in each layer. Then, relevance analysis between the critical features and preceding/subsequent parameter layers is adopted to bridge the route between two adjacent parameter layers. In the assembling phase, class-wise components of each layer are assembled into a new deep model for a specific task. Extensive experiments demonstrate that the assembled CNN classifier can achieve close accuracy with the original classifier without any fine-tune, and excess original performance with one-epoch fine-tune. What's more, we also conduct massive experiments to verify the broad application of MDA-Task on model decision route visualization, model compression, knowledge distillation, transfer learning, incremental learning, and so on.