Alert button
Picture for Michael Aertsen

Michael Aertsen

Alert button

Fetal Brain Tissue Annotation and Segmentation Challenge Results

Apr 20, 2022
Kelly Payette, Hongwei Li, Priscille de Dumast, Roxane Licandro, Hui Ji, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Hao Liu, Yuchen Pei, Lisheng Wang, Ying Peng, Juanying Xie, Huiquan Zhang, Guiming Dong, Hao Fu, Guotai Wang, ZunHyan Rieu, Donghyeon Kim, Hyun Gi Kim, Davood Karimi, Ali Gholipour, Helena R. Torres, Bruno Oliveira, João L. Vilaça, Yang Lin, Netanell Avisdris, Ori Ben-Zvi, Dafna Ben Bashat, Lucas Fidon, Michael Aertsen, Tom Vercauteren, Daniel Sobotka, Georg Langs, Mireia Alenyà, Maria Inmaculada Villanueva, Oscar Camara, Bella Specktor Fadida, Leo Joskowicz, Liao Weibin, Lv Yi, Li Xuesong, Moona Mazher, Abdul Qayyum, Domenec Puig, Hamza Kebiri, Zelin Zhang, Xinyi Xu, Dan Wu, KuanLun Liao, YiXuan Wu, JinTai Chen, Yunzhi Xu, Li Zhao, Lana Vasung, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab

Figure 1 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Figure 2 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Figure 3 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Figure 4 for Fetal Brain Tissue Annotation and Segmentation Challenge Results
Viaarxiv icon

A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation

Apr 05, 2022
Lucas Fidon, Michael Aertsen, Florian Kofler, Andrea Bink, Anna L. David, Thomas Deprest, Doaa Emam, Fr/'ed/'eric Guffens, András Jakab, Gregor Kasprian, Patric Kienast, Andrew Melbourne, Bjoern Menze, Nada Mufti, Ivana Pogledic, Daniela Prayer, Marlene Stuempflen, Esther Van Elslander, Sébastien Ourselin, Jan Deprest, Tom Vercauteren

Figure 1 for A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Figure 2 for A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Figure 3 for A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Figure 4 for A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Viaarxiv icon

Partial supervision for the FeTA challenge 2021

Nov 03, 2021
Lucas Fidon, Michael Aertsen, Suprosanna Shit, Philippe Demaerel, Sébastien Ourselin, Jan Deprest, Tom Vercauteren

Figure 1 for Partial supervision for the FeTA challenge 2021
Viaarxiv icon

Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI

Aug 09, 2021
Lucas Fidon, Michael Aertsen, Nada Mufti, Thomas Deprest, Doaa Emam, Frédéric Guffens, Ernst Schwartz, Michael Ebner, Daniela Prayer, Gregor Kasprian, Anna L. David, Andrew Melbourne, Sébastien Ourselin, Jan Deprest, Georg Langs, Tom Vercauteren

Figure 1 for Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI
Figure 2 for Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI
Figure 3 for Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI
Figure 4 for Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI
Viaarxiv icon

Label-set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation

Jul 09, 2021
Lucas Fidon, Michael Aertsen, Doaa Emam, Nada Mufti, Frédéric Guffens, Thomas Deprest, Philippe Demaerel, Anna L. David, Andrew Melbourne, Sébastien Ourselin, Jan Deprest, Tom Vercauteren

Figure 1 for Label-set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation
Figure 2 for Label-set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation
Figure 3 for Label-set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation
Figure 4 for Label-set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation
Viaarxiv icon

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

Apr 25, 2021
Xiangde Luo, Guotai Wang, Tao Song, Jingyang Zhang, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren, Shaoting Zhang

Figure 1 for MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
Figure 2 for MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
Figure 3 for MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
Figure 4 for MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
Viaarxiv icon

CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation

Sep 23, 2020
Ran Gu, Guotai Wang, Tao Song, Rui Huang, Michael Aertsen, Jan Deprest, Sébastien Ourselin, Tom Vercauteren, Shaoting Zhang

Figure 1 for CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation
Figure 2 for CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation
Figure 3 for CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation
Figure 4 for CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation
Viaarxiv icon

Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices

Jul 02, 2020
Guotai Wang, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren, Shaoting Zhang

Figure 1 for Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices
Figure 2 for Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices
Figure 3 for Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices
Figure 4 for Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices
Viaarxiv icon

Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks

Jul 20, 2018
Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sebastien Ourselin, Tom Vercauteren

Figure 1 for Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Figure 2 for Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Figure 3 for Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Figure 4 for Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Viaarxiv icon