Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Learning to Collide: Recommendation System Model Compression with Learned Hash Functions


Mar 28, 2022
Benjamin Ghaemmaghami, Mustafa Ozdal, Rakesh Komuravelli, Dmitriy Korchev, Dheevatsa Mudigere, Krishnakumar Nair, Maxim Naumov


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Supporting Massive DLRM Inference Through Software Defined Memory


Nov 08, 2021
Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki Rampersad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector Yuen, Shishir Juluri, Akshat Nanda, Manoj Wodekar, Dheevatsa Mudigere, Krishnakumar Nair, Maxim Naumov, Chris Peterson, Mikhail Smelyanskiy, Vijay Rao

* 14 pages, 5 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Differentiable NAS Framework and Application to Ads CTR Prediction


Oct 25, 2021
Ravi Krishna, Aravind Kalaiah, Bichen Wu, Maxim Naumov, Dheevatsa Mudigere, Misha Smelyanskiy, Kurt Keutzer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Low-Precision Hardware Architectures Meet Recommendation Model Inference at Scale


May 26, 2021
Zhaoxia, Deng, Jongsoo Park, Ping Tak Peter Tang, Haixin Liu, Jie, Yang, Hector Yuen, Jianyu Huang, Daya Khudia, Xiaohan Wei, Ellie Wen, Dhruv Choudhary, Raghuraman Krishnamoorthi, Carole-Jean Wu, Satish Nadathur, Changkyu Kim, Maxim Naumov, Sam Naghshineh, Mikhail Smelyanskiy


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

High-performance, Distributed Training of Large-scale Deep Learning Recommendation Models


Apr 15, 2021
Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim Naumov, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, Vijay Rao


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Time-based Sequence Model for Personalization and Recommendation Systems


Aug 27, 2020
Tigran Ishkhanov, Maxim Naumov, Xianjie Chen, Yan Zhu, Yuan Zhong, Alisson Gusatti Azzolini, Chonglin Sun, Frank Jiang, Andrey Malevich, Liang Xiong

* 17 pages, 7 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Mixed Dimension Embeddings with Application to Memory-Efficient Recommendation Systems


Sep 25, 2019
Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, James Zou


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
>>