Abstract:Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.
Abstract:The Internet of Things (IoT) ecosystem generates vast amounts of multimodal data from heterogeneous sources such as sensors, cameras, and microphones. As edge intelligence continues to evolve, IoT devices have progressed from simple data collection units to nodes capable of executing complex computational tasks. This evolution necessitates the adoption of distributed learning strategies to effectively handle multimodal data in an IoT environment. Furthermore, the real-time nature of data collection and limited local storage on edge devices in IoT call for an online learning paradigm. To address these challenges, we introduce the concept of Multimodal Online Federated Learning (MMO-FL), a novel framework designed for dynamic and decentralized multimodal learning in IoT environments. Building on this framework, we further account for the inherent instability of edge devices, which frequently results in missing modalities during the learning process. We conduct a comprehensive theoretical analysis under both complete and missing modality scenarios, providing insights into the performance degradation caused by missing modalities. To mitigate the impact of modality missing, we propose the Prototypical Modality Mitigation (PMM) algorithm, which leverages prototype learning to effectively compensate for missing modalities. Experimental results on two multimodal datasets further demonstrate the superior performance of PMM compared to benchmarks.
Abstract:Federated Adversarial Learning (FAL) is a robust framework for resisting adversarial attacks on federated learning. Although some FAL studies have developed efficient algorithms, they primarily focus on convergence performance and overlook generalization. Generalization is crucial for evaluating algorithm performance on unseen data. However, generalization analysis is more challenging due to non-smooth adversarial loss functions. A common approach to addressing this issue is to leverage smoothness approximation. In this paper, we develop algorithm stability measures to evaluate the generalization performance of two popular FAL algorithms: \textit{Vanilla FAL (VFAL)} and {\it Slack FAL (SFAL)}, using three different smooth approximation methods: 1) \textit{Surrogate Smoothness Approximation (SSA)}, (2) \textit{Randomized Smoothness Approximation (RSA)}, and (3) \textit{Over-Parameterized Smoothness Approximation (OPSA)}. Based on our in-depth analysis, we answer the question of how to properly set the smoothness approximation method to mitigate generalization error in FAL. Moreover, we identify RSA as the most effective method for reducing generalization error. In highly data-heterogeneous scenarios, we also recommend employing SFAL to mitigate the deterioration of generalization performance caused by heterogeneity. Based on our theoretical results, we provide insights to help develop more efficient FAL algorithms, such as designing new metrics and dynamic aggregation rules to mitigate heterogeneity.
Abstract:Large language models (LLMs) have demonstrated exceptional performance across a wide variety of domains. Nonetheless, generalist LLMs continue to fall short in reasoning tasks necessitating specialized knowledge. Prior investigations into specialized LLMs focused on domain-specific training, which entails substantial efforts in domain data acquisition and model parameter fine-tuning. To address these challenges, this paper proposes the Way-to-Specialist (WTS) framework, which synergizes retrieval-augmented generation with knowledge graphs (KGs) to enhance the specialized capability of LLMs in the absence of specialized training. In distinction to existing paradigms that merely utilize external knowledge from general KGs or static domain KGs to prompt LLM for enhanced domain-specific reasoning, WTS proposes an innovative "LLM$\circlearrowright$KG" paradigm, which achieves bidirectional enhancement between specialized LLM and domain knowledge graph (DKG). The proposed paradigm encompasses two closely coupled components: the DKG-Augmented LLM and the LLM-Assisted DKG Evolution. The former retrieves question-relevant domain knowledge from DKG and uses it to prompt LLM to enhance the reasoning capability for domain-specific tasks; the latter leverages LLM to generate new domain knowledge from processed tasks and use it to evolve DKG. WTS closes the loop between DKG-Augmented LLM and LLM-Assisted DKG Evolution, enabling continuous improvement in the domain specialization as it progressively answers and learns from domain-specific questions. We validate the performance of WTS on 6 datasets spanning 5 domains. The experimental results show that WTS surpasses the previous SOTA in 4 specialized domains and achieves a maximum performance improvement of 11.3%.
Abstract:STOchastic Recursive Momentum (STORM)-based algorithms have been widely developed to solve one to $K$-level ($K \geq 3$) stochastic optimization problems. Specifically, they use estimators to mitigate the biased gradient issue and achieve near-optimal convergence results. However, there is relatively little work on understanding their generalization performance, particularly evident during the transition from one to $K$-level optimization contexts. This paper provides a comprehensive generalization analysis of three representative STORM-based algorithms: STORM, COVER, and SVMR, for one, two, and $K$-level stochastic optimizations under both convex and strongly convex settings based on algorithmic stability. Firstly, we define stability for $K$-level optimizations and link it to generalization. Then, we detail the stability results for three prominent STORM-based algorithms. Finally, we derive their excess risk bounds by balancing stability results with optimization errors. Our theoretical results provide strong evidence to complete STORM-based algorithms: (1) Each estimator may decrease their stability due to variance with its estimation target. (2) Every additional level might escalate the generalization error, influenced by the stability and the variance between its cumulative stochastic gradient and the true gradient. (3) Increasing the batch size for the initial computation of estimators presents a favorable trade-off, enhancing the generalization performance.
Abstract:Multi-agent perception (MAP) allows autonomous systems to understand complex environments by interpreting data from multiple sources. This paper investigates intermediate collaboration for MAP with a specific focus on exploring "good" properties of collaborative view (i.e., post-collaboration feature) and its underlying relationship to individual views (i.e., pre-collaboration features), which were treated as an opaque procedure by most existing works. We propose a novel framework named CMiMC (Contrastive Mutual Information Maximization for Collaborative Perception) for intermediate collaboration. The core philosophy of CMiMC is to preserve discriminative information of individual views in the collaborative view by maximizing mutual information between pre- and post-collaboration features while enhancing the efficacy of collaborative views by minimizing the loss function of downstream tasks. In particular, we define multi-view mutual information (MVMI) for intermediate collaboration that evaluates correlations between collaborative views and individual views on both global and local scales. We establish CMiMNet based on multi-view contrastive learning to realize estimation and maximization of MVMI, which assists the training of a collaboration encoder for voxel-level feature fusion. We evaluate CMiMC on V2X-Sim 1.0, and it improves the SOTA average precision by 3.08% and 4.44% at 0.5 and 0.7 IoU (Intersection-over-Union) thresholds, respectively. In addition, CMiMC can reduce communication volume to 1/32 while achieving performance comparable to SOTA. Code and Appendix are released at https://github.com/77SWF/CMiMC.
Abstract:The rapid uptake of intelligent applications is pushing deep learning (DL) capabilities to Internet-of-Things (IoT). Despite the emergence of new tools for embedding deep neural networks (DNNs) into IoT devices, providing satisfactory Quality of Experience (QoE) to users is still challenging due to the heterogeneity in DNN architectures, IoT devices, and user preferences. This paper studies automated customization for DL inference on IoT devices (termed as on-thing inference), and our goal is to enhance user QoE by configuring the on-thing inference with an appropriate DNN for users under different usage scenarios. The core of our method is a DNN selection module that learns user QoE patterns on-the-fly and identifies the best-fit DNN for on-thing inference with the learned knowledge. It leverages a novel online learning algorithm, NeuralUCB, that has excellent generalization ability for handling various user QoE patterns. We also embed the knowledge transfer technique in NeuralUCB to expedite the learning process. However, NeuralUCB frequently solicits QoE ratings from users, which incurs non-negligible inconvenience. To address this problem, we design feedback solicitation schemes to reduce the number of QoE solicitations while maintaining the learning efficiency of NeuralUCB. A pragmatic problem, aggregated QoE, is further investigated to improve the practicality of our framework. We conduct experiments on both synthetic and real-world data. The results indicate that our method efficiently learns the user QoE pattern with few solicitations and provides drastic QoE enhancement for IoT devices.
Abstract:Federated Learning (FL) has been considered as an appealing framework to tackle data privacy issues of mobile devices compared to conventional Machine Learning (ML). Using Edge Servers (ESs) as intermediaries to perform model aggregation in proximity can reduce the transmission overhead, and it enables great potentials in low-latency FL, where the hierarchical architecture of FL (HFL) has been attracted more attention. Designing a proper client selection policy can significantly improve training performance, and it has been extensively used in FL studies. However, to the best of our knowledge, there are no studies focusing on HFL. In addition, client selection for HFL faces more challenges than conventional FL, e.g., the time-varying connection of client-ES pairs and the limited budget of the Network Operator (NO). In this paper, we investigate a client selection problem for HFL, where the NO learns the number of successful participating clients to improve the training performance (i.e., select as many clients in each round) as well as under the limited budget on each ES. An online policy, called Context-aware Online Client Selection (COCS), is developed based on Contextual Combinatorial Multi-Armed Bandit (CC-MAB). COCS observes the side-information (context) of local computing and transmission of client-ES pairs and makes client selection decisions to maximize NO's utility given a limited budget. Theoretically, COCS achieves a sublinear regret compared to an Oracle policy on both strongly convex and non-convex HFL. Simulation results also support the efficiency of the proposed COCS policy on real-world datasets.
Abstract:Recent breakthroughs in deep learning (DL) have led to the emergence of many intelligent mobile applications and services, but in the meanwhile also pose unprecedented computing challenges on resource-constrained mobile devices. This paper builds a collaborative deep inference system between a resource-constrained mobile device and a powerful edge server, aiming at joining the power of both on-device processing and computation offloading. The basic idea of this system is to partition a deep neural network (DNN) into a front-end part running on the mobile device and a back-end part running on the edge server, with the key challenge being how to locate the optimal partition point to minimize the end-to-end inference delay. Unlike existing efforts on DNN partitioning that rely heavily on a dedicated offline profiling stage to search for the optimal partition point, our system has a built-in online learning module, called Autodidactic Neurosurgeon (ANS), to automatically learn the optimal partition point on-the-fly. Therefore, ANS is able to closely follow the changes of the system environment by generating new knowledge for adaptive decision making. The core of ANS is a novel contextual bandit learning algorithm, called $\mu$LinUCB, which not only has provable theoretical learning performance guarantee but also is ultra-lightweight for easy real-world implementation. We implement our system on a video stream object detection testbed to validate the design of ANS and evaluate its performance. The experiments show that ANS significantly outperforms state-of-the-art benchmarks in terms of tracking system changes and reducing the end-to-end inference delay.
Abstract:This paper studies a federated learning (FL) system, where \textit{multiple} FL services co-exist in a wireless network and share common wireless resources. It fills the void of wireless resource allocation for multiple simultaneous FL services in the existing literature. Our method designs a two-level resource allocation framework comprising \emph{intra-service} resource allocation and \emph{inter-service} resource allocation. The intra-service resource allocation problem aims to minimize the length of FL rounds by optimizing the bandwidth allocation among the clients of each FL service. Based on this, an inter-service resource allocation problem is further considered, which distributes bandwidth resources among multiple simultaneous FL services. We consider both cooperative and selfish providers of the FL services. For cooperative FL service providers, we design a distributed bandwidth allocation algorithm to optimize the overall performance of multiple FL services, meanwhile cater to the fairness among FL services and the privacy of clients. For selfish FL service providers, a new auction scheme is designed with the FL service owners as the bidders and the network provider as the auctioneer. The designed auction scheme strikes a balance between the overall FL performance and fairness. Our simulation results show that the proposed algorithms outperform other benchmarks under various network conditions.