Abstract:White box adversarial perturbations are sought via iterative optimization algorithms most often minimizing an adversarial loss on a $l_p$ neighborhood of the original image, the so-called distortion set. Constraining the adversarial search with different norms results in disparately structured adversarial examples. Here we explore several distortion sets with structure-enhancing algorithms. These new structures for adversarial examples, yet pervasive in optimization, are for instance a challenge for adversarial theoretical certification which again provides only $l_p$ certificates. Because adversarial robustness is still an empirical field, defense mechanisms should also reasonably be evaluated against differently structured attacks. Besides, these structured adversarial perturbations may allow for larger distortions size than their $l_p$ counter-part while remaining imperceptible or perceptible as natural slight distortions of the image. Finally, they allow some control on the generation of the adversarial perturbation, like (localized) bluriness.
Abstract:We study how to train a student deep neural network for visual recognition by distilling knowledge from a blackbox teacher model in a data-efficient manner. Progress on this problem can significantly reduce the dependence on large-scale datasets for learning high-performing visual recognition models. There are two major challenges. One is that the number of queries into the teacher model should be minimized to save computational and/or financial costs. The other is that the number of images used for the knowledge distillation should be small; otherwise, it violates our expectation of reducing the dependence on large-scale datasets. To tackle these challenges, we propose an approach that blends mixup and active learning. The former effectively augments the few unlabeled images by a big pool of synthetic images sampled from the convex hull of the original images, and the latter actively chooses from the pool hard examples for the student neural network and query their labels from the teacher model. We validate our approach with extensive experiments.
Abstract:We propose a new task towards more practical application for image generation - high-quality image synthesis from salient object layout. This new setting allows users to provide the layout of salient objects only (i.e., foreground bounding boxes and categories), and lets the model complete the drawing with an invented background and a matching foreground. Two main challenges spring from this new task: (i) how to generate fine-grained details and realistic textures without segmentation map input; and (ii) how to create a background and weave it seamlessly into standalone objects. To tackle this, we propose Background Hallucination Generative Adversarial Network (BachGAN), which first selects a set of segmentation maps from a large candidate pool via a background retrieval module, then encodes these candidate layouts via a background fusion module to hallucinate a suitable background for the given objects. By generating the hallucinated background representation dynamically, our model can synthesize high-resolution images with both photo-realistic foreground and integral background. Experiments on Cityscapes and ADE20K datasets demonstrate the advantage of BachGAN over existing methods, measured on both visual fidelity of generated images and visual alignment between output images and input layouts.
Abstract:Object frequency in the real world often follows a power law, leading to a mismatch between datasets with long-tailed class distributions seen by a machine learning model and our expectation of the model to perform well on all classes. We analyze this mismatch from a domain adaptation point of view. First of all, we connect existing class-balanced methods for long-tailed classification to target shift, a well-studied scenario in domain adaptation. The connection reveals that these methods implicitly assume that the training data and test data share the same class-conditioned distribution, which does not hold in general and especially for the tail classes. While a head class could contain abundant and diverse training examples that well represent the expected data at inference time, the tail classes are often short of representative training data. To this end, we propose to augment the classic class-balanced learning by explicitly estimating the differences between the class-conditioned distributions with a meta-learning approach. We validate our approach with six benchmark datasets and three loss functions.
Abstract:Speaker diarization, which is to find the speech segments of specific speakers, has been widely used in human-centered applications such as video conferences or human-computer interaction systems. In this paper, we propose a self-supervised audio-video synchronization learning method to address the problem of speaker diarization without massive labeling effort. We improve the previous approaches by introducing two new loss functions: the dynamic triplet loss and the multinomial loss. We test them on a real-world human-computer interaction system and the results show our best model yields a remarkable gain of +8%F1-scoresas well as diarization error rate reduction. Finally, we introduce a new large scale audio-video corpus designed to fill the vacancy of audio-video datasets in Chinese.
Abstract:There is an increasing number of pre-trained deep neural network models. However, it is still unclear how to effectively use these models for a new task. Transfer learning, which aims to transfer knowledge from source tasks to a target task, is an effective solution to this problem. Fine-tuning is a popular transfer learning technique for deep neural networks where a few rounds of training are applied to the parameters of a pre-trained model to adapt them to a new task. Despite its popularity, in this paper, we show that fine-tuning suffers from several drawbacks. We propose an adaptive fine-tuning approach, called AdaFilter, which selects only a part of the convolutional filters in the pre-trained model to optimize on a per-example basis. We use a recurrent gated network to selectively fine-tune convolutional filters based on the activations of the previous layer. We experiment with 7 public image classification datasets and the results show that AdaFilter can reduce the average classification error of the standard fine-tuning by 2.54%.
Abstract:As deep neural networks (DNNs) have become increasingly important and popular, the robustness of DNNs is the key to the safety of both the Internet and the physical world. Unfortunately, some recent studies show that adversarial examples, which are hard to be distinguished from real examples, can easily fool DNNs and manipulate their predictions. Upon observing that adversarial examples are mostly generated by gradient-based methods, in this paper, we first propose to use a simple yet very effective non-differentiable hybrid model that combines DNNs and random forests, rather than hide gradients from attackers, to defend against the attacks. Our experiments show that our model can successfully and completely defend the white-box attacks, has a lower transferability, and is quite resistant to three representative types of black-box attacks; while at the same time, our model achieves similar classification accuracy as the original DNNs. Finally, we investigate and suggest a criterion to define where to grow random forests in DNNs.
Abstract:Deep Neural Network (DNN) trained by the gradient descent method is known to be vulnerable to maliciously perturbed adversarial input, aka. adversarial attack. As one of the countermeasures against adversarial attack, increasing the model capacity for DNN robustness enhancement was discussed and reported as an effective approach by many recent works. In this work, we show that shrinking the model size through proper weight pruning can even be helpful to improve the DNN robustness under adversarial attack. For obtaining a simultaneously robust and compact DNN model, we propose a multi-objective training method called Robust Sparse Regularization (RSR), through the fusion of various regularization techniques, including channel-wise noise injection, lasso weight penalty, and adversarial training. We conduct extensive experiments across popular ResNet-20, ResNet-18 and VGG-16 DNN architectures to demonstrate the effectiveness of RSR against popular white-box (i.e., PGD and FGSM) and black-box attacks. Thanks to RSR, 85% weight connections of ResNet-18 can be pruned while still achieving 0.68% and 8.72% improvement in clean- and perturbed-data accuracy respectively on CIFAR-10 dataset, in comparison to its PGD adversarial training baseline.
Abstract:Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and for thoroughly testing defense techniques. In this paper, we propose a black-box adversarial attack algorithm that can defeat both vanilla DNNs and those generated by various defense techniques developed recently. Instead of searching for an "optimal" adversarial example for a benign input to a targeted DNN, our algorithm finds a probability density distribution over a small region centered around the input, such that a sample drawn from this distribution is likely an adversarial example, without the need of accessing the DNN's internal layers or weights. Our approach is universal as it can successfully attack different neural networks by a single algorithm. It is also strong; according to the testing against 2 vanilla DNNs and 13 defended ones, it outperforms state-of-the-art black-box or white-box attack methods for most test cases. Additionally, our results reveal that adversarial training remains one of the best defense techniques, and the adversarial examples are not as transferable across defended DNNs as them across vanilla DNNs.
Abstract:In this paper, we present a new inpainting framework for recovering missing regions of video frames. Compared with image inpainting, performing this task on video presents new challenges such as how to preserving temporal consistency and spatial details, as well as how to handle arbitrary input video size and length fast and efficiently. Towards this end, we propose a novel deep learning architecture which incorporates ConvLSTM and optical flow for modeling the spatial-temporal consistency in videos. It also saves much computational resource such that our method can handle videos with larger frame size and arbitrary length streamingly in real-time. Furthermore, to generate an accurate optical flow from corrupted frames, we propose a robust flow generation module, where two sources of flows are fed and a flow blending network is trained to fuse them. We conduct extensive experiments to evaluate our method in various scenarios and different datasets, both qualitatively and quantitatively. The experimental results demonstrate the superior of our method compared with the state-of-the-art inpainting approaches.