Terminus Group, Beijing, China
Abstract:Pedestrian detection is an important but challenging problem in computer vision, especially in human-centric tasks. Over the past decade, significant improvement has been witnessed with the help of handcrafted features and deep features. Here we present a comprehensive survey on recent advances in pedestrian detection. First, we provide a detailed review of single-spectral pedestrian detection that includes handcrafted features based methods and deep features based approaches. For handcrafted features based methods, we present an extensive review of approaches and find that handcrafted features with large freedom degrees in shape and space have better performance. In the case of deep features based approaches, we split them into pure CNN based methods and those employing both handcrafted and CNN based features. We give the statistical analysis and tendency of these methods, where feature enhanced, part-aware, and post-processing methods have attracted main attention. In addition to single-spectral pedestrian detection, we also review multi-spectral pedestrian detection, which provides more robust features for illumination variance. Furthermore, we introduce some related datasets and evaluation metrics, and compare some representative methods. We conclude this survey by emphasizing open problems that need to be addressed and highlighting various future directions. Researchers can track an up-to-date list at https://github.com/JialeCao001/PedSurvey.
Abstract:Batch normalization (BN) is an important technique commonly incorporated into deep learning models to perform standardization within mini-batches. The merits of BN in improving model's learning efficiency can be further amplified by applying whitening, while its drawbacks in estimating population statistics for inference can be avoided through group normalization (GN). This paper proposes group whitening (GW), which elaborately exploits the advantages of the whitening operation and avoids the disadvantages of normalization within mini-batches. Specifically, GW divides the neurons of a sample into groups for standardization, like GN, and then further decorrelates the groups. In addition, we quantitatively analyze the constraint imposed by normalization, and show how the batch size (group number) affects the performance of batch (group) normalized networks, from the perspective of model's representational capacity. This analysis provides theoretical guidance for applying GW in practice. Finally, we apply the proposed GW to ResNet and ResNeXt architectures and conduct experiments on the ImageNet and COCO benchmarks. Results show that GW consistently improves the performance of different architectures, with absolute gains of $1.02\%$ $\sim$ $1.49\%$ in top-1 accuracy on ImageNet and $1.82\%$ $\sim$ $3.21\%$ in bounding box AP on COCO.
Abstract:Normalization techniques are essential for accelerating the training and improving the generalization of deep neural networks (DNNs), and have successfully been used in various applications. This paper reviews and comments on the past, present and future of normalization methods in the context of DNN training. We provide a unified picture of the main motivation behind different approaches from the perspective of optimization, and present a taxonomy for understanding the similarities and differences between them. Specifically, we decompose the pipeline of the most representative normalizing activation methods into three components: the normalization area partitioning, normalization operation and normalization representation recovery. In doing so, we provide insight for designing new normalization technique. Finally, we discuss the current progress in understanding normalization methods, and provide a comprehensive review of the applications of normalization for particular tasks, in which it can effectively solve the key issues.
Abstract:Video summarization is an effective way to facilitate video searching and browsing. Most of existing systems employ encoder-decoder based recurrent neural networks, which fail to explicitly diversify the system-generated summary frames while requiring intensive computations. In this paper, we propose an efficient convolutional neural network architecture for video SUMmarization via Global Diverse Attention called SUM-GDA, which adapts attention mechanism in a global perspective to consider pairwise temporal relations of video frames. Particularly, the GDA module has two advantages: 1) it models the relations within paired frames as well as the relations among all pairs, thus capturing the global attention across all frames of one video; 2) it reflects the importance of each frame to the whole video, leading to diverse attention on these frames. Thus, SUM-GDA is beneficial for generating diverse frames to form satisfactory video summary. Extensive experiments on three data sets, i.e., SumMe, TVSum, and VTW, have demonstrated that SUM-GDA and its extension outperform other competing state-of-the-art methods with remarkable improvements. In addition, the proposed models can be run in parallel with significantly less computational costs, which helps the deployment in highly demanding applications.
Abstract:People with diabetes are at risk of developing an eye disease called diabetic retinopathy (DR). This disease occurs when high blood glucose levels cause damage to blood vessels in the retina. Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading, due to the great success of deep learning. However, most current DR diagnosis systems do not achieve satisfactory performance or interpretability for ophthalmologists, due to the lack of training data with consistent and fine-grained annotations. To address this problem, we construct a large fine-grained annotated DR dataset containing 2,842 images (FGADR). This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists with intra-rater consistency. The proposed dataset will enable extensive studies on DR diagnosis. We set up three benchmark tasks for evaluation: 1. DR lesion segmentation; 2. DR grading by joint classification and segmentation; 3. Transfer learning for ocular multi-disease identification. Moreover, a novel inductive transfer learning method is introduced for the third task. Extensive experiments using different state-of-the-art methods are conducted on our FGADR dataset, which can serve as baselines for future research.
Abstract:Although generative adversarial network (GAN) based style transfer is state of the art in histopathology color-stain normalization, they do not explicitly integrate structural information of tissues. We propose a self-supervised approach to incorporate semantic guidance into a GAN based stain normalization framework and preserve detailed structural information. Our method does not require manual segmentation maps which is a significant advantage over existing methods. We integrate semantic information at different layers between a pre-trained semantic network and the stain color normalization network. The proposed scheme outperforms other color normalization methods leading to better classification and segmentation performance.
Abstract:Salient object detection (SOD), which simulates the human visual perception system to locate the most attractive object(s) in a scene, has been widely applied to various computer vision tasks. Now, with the advent of depth sensors, depth maps with affluent spatial information that can be beneficial in boosting the performance of SOD, can easily be captured. Although various RGB-D based SOD models with promising performance have been proposed over the past several years, an in-depth understanding of these models and challenges in this topic remains lacking. In this paper, we provide a comprehensive survey of RGB-D based SOD models from various perspectives, and review related benchmark datasets in detail. Further, considering that the light field can also provide depth maps, we review SOD models and popular benchmark datasets from this domain as well. Moreover, to investigate the SOD ability of existing models, we carry out a comprehensive evaluation, as well as attribute-based evaluation of several representative RGB-D based SOD models. Finally, we discuss several challenges and open directions of RGB-D based SOD for future research. All collected models, benchmark datasets, source code links, datasets constructed for attribute-based evaluation, and codes for evaluation will be made publicly available at https://github.com/taozh2017/RGBDSODsurvey
Abstract:Single-stage instance segmentation approaches have recently gained popularity due to their speed and simplicity, but are still lagging behind in accuracy, compared to two-stage methods. We propose a fast single-stage instance segmentation method, called SipMask, that preserves instance-specific spatial information by separating mask prediction of an instance to different sub-regions of a detected bounding-box. Our main contribution is a novel light-weight spatial preservation (SP) module that generates a separate set of spatial coefficients for each sub-region within a bounding-box, leading to improved mask predictions. It also enables accurate delineation of spatially adjacent instances. Further, we introduce a mask alignment weighting loss and a feature alignment scheme to better correlate mask prediction with object detection. On COCO test-dev, our SipMask outperforms the existing single-stage methods. Compared to the state-of-the-art single-stage TensorMask, SipMask obtains an absolute gain of 1.0% (mask AP), while providing a four-fold speedup. In terms of real-time capabilities, SipMask outperforms YOLACT with an absolute gain of 3.0% (mask AP) under similar settings, while operating at comparable speed on a Titan Xp. We also evaluate our SipMask for real-time video instance segmentation, achieving promising results on YouTube-VIS dataset. The source code is available at https://github.com/JialeCao001/SipMask.
Abstract:Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discriminative part features. Existing VI-ReID methods instead tend to learn global representations, which have limited discriminability and weak robustness to noisy images. In this paper, we propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID. We propose an intra-modality weighted-part attention module to extract discriminative part-aggregated features, by imposing the domain knowledge on the part relationship mining. To enhance robustness against noisy samples, we introduce cross-modality graph structured attention to reinforce the representation with the contextual relations across the two modalities. We also develop a parameter-free dynamic dual aggregation learning strategy to adaptively integrate the two components in a progressive joint training manner. Extensive experiments demonstrate that DDAG outperforms the state-of-the-art methods under various settings.
Abstract:Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift. In this paper, we address both problems. We introduce a probabilistic meta-learning model for domain generalization, in which classifier parameters shared across domains are modeled as distributions. This enables better handling of prediction uncertainty on unseen domains. To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB. MetaVIB is derived from novel variational bounds of mutual information, by leveraging the meta-learning setting of domain generalization. Through episodic training, MetaVIB learns to gradually narrow domain gaps to establish domain-invariant representations, while simultaneously maximizing prediction accuracy. We conduct experiments on three benchmarks for cross-domain visual recognition. Comprehensive ablation studies validate the benefits of MetaVIB for domain generalization. The comparison results demonstrate our method outperforms previous approaches consistently.