Abstract:3D pose estimation has recently gained substantial interests in computer vision domain. Existing 3D pose estimation methods have a strong reliance on large size well-annotated 3D pose datasets, and they suffer poor model generalization on unseen poses due to limited diversity of 3D poses in training sets. In this work, we propose PoseGU, a novel human pose generator that generates diverse poses with access only to a small size of seed samples, while equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation objective. Extensive experiments demonstrate PoseGU outforms almost all the state-of-the-art 3D human pose methods under consideration over three popular benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses with improved data diversity and better generalization ability.
Abstract:Recently, large-scale pre-training methods like CLIP have made great progress in multi-modal research such as text-video retrieval. In CLIP, transformers are vital for modeling complex multi-modal relations. However, in the vision transformer of CLIP, the essential visual tokenization process, which produces discrete visual token sequences, generates many homogeneous tokens due to the redundancy nature of consecutive and similar frames in videos. This significantly increases computation costs and hinders the deployment of video retrieval models in web applications. In this paper, to reduce the number of redundant video tokens, we design a multi-segment token clustering algorithm to find the most representative tokens and drop the non-essential ones. As the frame redundancy occurs mostly in consecutive frames, we divide videos into multiple segments and conduct segment-level clustering. Center tokens from each segment are later concatenated into a new sequence, while their original spatial-temporal relations are well maintained. We instantiate two clustering algorithms to efficiently find deterministic medoids and iteratively partition groups in high dimensional space. Through this token clustering and center selection procedure, we successfully reduce computation costs by removing redundant visual tokens. This method further enhances segment-level semantic alignment between video and text representations, enforcing the spatio-temporal interactions of tokens from within-segment frames. Our method, coined as CenterCLIP, surpasses existing state-of-the-art by a large margin on typical text-video benchmarks, while reducing the training memory cost by 35\% and accelerating the inference speed by 14\% at the best case. The code is available at \href{{https://github.com/mzhaoshuai/CenterCLIP}}{{https://github.com/mzhaoshuai/CenterCLIP}}.
Abstract:As an important area in computer vision, object tracking has formed two separate communities that respectively study Single Object Tracking (SOT) and Multiple Object Tracking (MOT). However, current methods in one tracking scenario are not easily adapted to the other due to the divergent training datasets and tracking objects of both tasks. Although UniTrack \cite{wang2021different} demonstrates that a shared appearance model with multiple heads can be used to tackle individual tracking tasks, it fails to exploit the large-scale tracking datasets for training and performs poorly on single object tracking. In this work, we present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm. A track transformer is developed in our UTT to track the target in both SOT and MOT. The correlation between the target and tracking frame features is exploited to localize the target. We demonstrate that both SOT and MOT tasks can be solved within this framework. The model can be simultaneously end-to-end trained by alternatively optimizing the SOT and MOT objectives on the datasets of individual tasks. Extensive experiments are conducted on several benchmarks with a unified model trained on SOT and MOT datasets. Code will be available at https://github.com/Flowerfan/Trackron.
Abstract:Temporal grounding in videos aims to localize one target video segment that semantically corresponds to a given query sentence. Thanks to the semantic diversity of natural language descriptions, temporal grounding allows activity grounding beyond pre-defined classes and has received increasing attention in recent years. The semantic diversity is rooted in the principle of compositionality in linguistics, where novel semantics can be systematically described by combining known words in novel ways (compositional generalization). However, current temporal grounding datasets do not specifically test for the compositional generalizability. To systematically measure the compositional generalizability of temporal grounding models, we introduce a new Compositional Temporal Grounding task and construct two new dataset splits, i.e., Charades-CG and ActivityNet-CG. Evaluating the state-of-the-art methods on our new dataset splits, we empirically find that they fail to generalize to queries with novel combinations of seen words. To tackle this challenge, we propose a variational cross-graph reasoning framework that explicitly decomposes video and language into multiple structured hierarchies and learns fine-grained semantic correspondence among them. Experiments illustrate the superior compositional generalizability of our approach. The repository of this work is at https://github.com/YYJMJC/ Compositional-Temporal-Grounding.
Abstract:To improve the generalization of detectors, for domain adaptive object detection (DAOD), recent advances mainly explore aligning feature-level distributions between the source and single-target domain, which may neglect the impact of domain-specific information existing in the aligned features. Towards DAOD, it is important to extract domain-invariant object representations. To this end, in this paper, we try to disentangle domain-invariant representations from domain-specific representations. And we propose a novel disentangled method based on vector decomposition. Firstly, an extractor is devised to separate domain-invariant representations from the input, which are used for extracting object proposals. Secondly, domain-specific representations are introduced as the differences between the input and domain-invariant representations. Through the difference operation, the gap between the domain-specific and domain-invariant representations is enlarged, which promotes domain-invariant representations to contain more domain-irrelevant information. In the experiment, we separately evaluate our method on the single- and compound-target case. For the single-target case, experimental results of four domain-shift scenes show our method obtains a significant performance gain over baseline methods. Moreover, for the compound-target case (i.e., the target is a compound of two different domains without domain labels), our method outperforms baseline methods by around 4%, which demonstrates the effectiveness of our method.
Abstract:Video-and-Language Inference is a recently proposed task for joint video-and-language understanding. This new task requires a model to draw inference on whether a natural language statement entails or contradicts a given video clip. In this paper, we study how to address three critical challenges for this task: judging the global correctness of the statement involved multiple semantic meanings, joint reasoning over video and subtitles, and modeling long-range relationships and complex social interactions. First, we propose an adaptive hierarchical graph network that achieves in-depth understanding of the video over complex interactions. Specifically, it performs joint reasoning over video and subtitles in three hierarchies, where the graph structure is adaptively adjusted according to the semantic structures of the statement. Secondly, we introduce semantic coherence learning to explicitly encourage the semantic coherence of the adaptive hierarchical graph network from three hierarchies. The semantic coherence learning can further improve the alignment between vision and linguistics, and the coherence across a sequence of video segments. Experimental results show that our method significantly outperforms the baseline by a large margin.
Abstract:Obtaining viewer responses from videos can be useful for creators and streaming platforms to analyze the video performance and improve the future user experience. In this report, we present our method for 2021 Evoked Expression from Videos Challenge. In particular, our model utilizes both audio and image modalities as inputs to predict emotion changes of viewers. To model long-range emotion changes, we use a GRU-based model to predict one sparse signal with 1Hz. We observe that the emotion changes are smooth. Therefore, the final dense prediction is obtained via linear interpolating the signal, which is robust to the prediction fluctuation. Albeit simple, the proposed method has achieved pearson's correlation score of 0.04430 on the final private test set.
Abstract:Contemporary data-driven methods are typically fed with full supervision on large-scale datasets which limits their applicability. However, in the actual systems with limitations such as measurement error and data acquisition problems, people usually obtain incomplete data. Although data completion has attracted wide attention, the underlying data pattern and relativity are still under-developed. Currently, the family of latent variable models allows learning deep latent variables over observed variables by fitting the marginal distribution. As far as we know, current methods fail to perceive the data relativity under partial observation. Aiming at modeling incomplete data, this work uses relational inference to fill in the incomplete data. Specifically, we expect to approximate the real joint distribution over the partial observation and latent variables, thus infer the unseen targets respectively. To this end, we propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects: (i) On one hand, the inner relationship is built among the context points in the partial observation; (ii) On the other hand, the unseen targets are inferred by learning the cross-relationship with the observed data points. It is further discovered that the proposed method can be generalized to different scenarios regardless of whether the physical structure can be observed or not. It is demonstrated that the proposed OR-Net can be well generalized for data completion tasks of various modalities, including function regression, image completion on MNIST and CelebA datasets, and also sequential motion generation conditioned on the observed poses.
Abstract:It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Abstract:Text-video retrieval is a challenging task that aims to search relevant video contents based on natural language descriptions. The key to this problem is to measure text-video similarities in a joint embedding space. However, most existing methods only consider the global cross-modal similarity and overlook the local details. Some works incorporate the local comparisons through cross-modal local matching and reasoning. These complex operations introduce tremendous computation. In this paper, we design an efficient global-local alignment method. The multi-modal video sequences and text features are adaptively aggregated with a set of shared semantic centers. The local cross-modal similarities are computed between the video feature and text feature within the same center. This design enables the meticulous local comparison and reduces the computational cost of the interaction between each text-video pair. Moreover, a global alignment method is proposed to provide a global cross-modal measurement that is complementary to the local perspective. The global aggregated visual features also provide additional supervision, which is indispensable to the optimization of the learnable semantic centers. We achieve consistent improvements on three standard text-video retrieval benchmarks and outperform the state-of-the-art by a clear margin.