Abstract:Scene graph generation (SGG) is built on top of detected objects to predict object pairwise visual relations for describing the image content abstraction. Existing works have revealed that if the links between objects are given as prior knowledge, the performance of SGG is significantly improved. Inspired by this observation, in this article, we propose a relation regularized network (R2-Net), which can predict whether there is a relationship between two objects and encode this relation into object feature refinement and better SGG. Specifically, we first construct an affinity matrix among detected objects to represent the probability of a relationship between two objects. Graph convolution networks (GCNs) over this relation affinity matrix are then used as object encoders, producing relation-regularized representations of objects. With these relation-regularized features, our R2-Net can effectively refine object labels and generate scene graphs. Extensive experiments are conducted on the visual genome dataset for three SGG tasks (i.e., predicate classification, scene graph classification, and scene graph detection), demonstrating the effectiveness of our proposed method. Ablation studies also verify the key roles of our proposed components in performance improvement.
Abstract:Adversarial examples have posed a severe threat to deep neural networks due to their transferable nature. Currently, various works have paid great efforts to enhance the cross-model transferability, which mostly assume the substitute model is trained in the same domain as the target model. However, in reality, the relevant information of the deployed model is unlikely to leak. Hence, it is vital to build a more practical black-box threat model to overcome this limitation and evaluate the vulnerability of deployed models. In this paper, with only the knowledge of the ImageNet domain, we propose a Beyond ImageNet Attack (BIA) to investigate the transferability towards black-box domains (unknown classification tasks). Specifically, we leverage a generative model to learn the adversarial function for disrupting low-level features of input images. Based on this framework, we further propose two variants to narrow the gap between the source and target domains from the data and model perspectives, respectively. Extensive experiments on coarse-grained and fine-grained domains demonstrate the effectiveness of our proposed methods. Notably, our methods outperform state-of-the-art approaches by up to 7.71\% (towards coarse-grained domains) and 25.91\% (towards fine-grained domains) on average. Our code is available at \url{https://github.com/qilong-zhang/Beyond-ImageNet-Attack}.
Abstract:Part-level Action Parsing aims at part state parsing for boosting action recognition in videos. Despite of dramatic progresses in the area of video classification research, a severe problem faced by the community is that the detailed understanding of human actions is ignored. Our motivation is that parsing human actions needs to build models that focus on the specific problem. We present a simple yet effective approach, named disentangled action parsing (DAP). Specifically, we divided the part-level action parsing into three stages: 1) person detection, where a person detector is adopted to detect all persons from videos as well as performs instance-level action recognition; 2) Part parsing, where a part-parsing model is proposed to recognize human parts from detected person images; and 3) Action parsing, where a multi-modal action parsing network is used to parse action category conditioning on all detection results that are obtained from previous stages. With these three major models applied, our approach of DAP records a global mean of $0.605$ score in 2021 Kinetics-TPS Challenge.
Abstract:Adversarial attacks make their success in \enquote{fooling} DNNs and among them, gradient-based algorithms become one of the mainstreams. Based on the linearity hypothesis~\cite{fgsm}, under $\ell_\infty$ constraint, $sign$ operation applied to the gradients is a good choice for generating perturbations. However, the side-effect from such operation exists since it leads to the bias of direction between the real gradients and the perturbations. In other words, current methods contain a gap between real gradients and actual noises, which leads to biased and inefficient attacks. Therefore in this paper, based on the Taylor expansion, the bias is analyzed theoretically and the correction of $\sign$, \ie, Fast Gradient Non-sign Method (FGNM), is further proposed. Notably, FGNM is a general routine, which can seamlessly replace the conventional $sign$ operation in gradient-based attacks with negligible extra computational cost. Extensive experiments demonstrate the effectiveness of our methods. Specifically, ours outperform them by \textbf{27.5\%} at most and \textbf{9.5\%} on average. Our anonymous code is publicly available: \url{https://git.io/mm-fgnm}.
Abstract:Due to the vulnerability of deep neural networks (DNNs) to adversarial examples, a large number of defense techniques have been proposed to alleviate this problem in recent years. However, the progress of building more robust models is usually hampered by the incomplete or incorrect robustness evaluation. To accelerate the research on reliable evaluation of adversarial robustness of the current defense models in image classification, the TSAIL group at Tsinghua University and the Alibaba Security group organized this competition along with a CVPR 2021 workshop on adversarial machine learning (https://aisecure-workshop.github.io/amlcvpr2021/). The purpose of this competition is to motivate novel attack algorithms to evaluate adversarial robustness more effectively and reliably. The participants were encouraged to develop stronger white-box attack algorithms to find the worst-case robustness of different defenses. This competition was conducted on an adversarial robustness evaluation platform -- ARES (https://github.com/thu-ml/ares), and is held on the TianChi platform (https://tianchi.aliyun.com/competition/entrance/531847/introduction) as one of the series of AI Security Challengers Program. After the competition, we summarized the results and established a new adversarial robustness benchmark at https://ml.cs.tsinghua.edu.cn/ares-bench/, which allows users to upload adversarial attack algorithms and defense models for evaluation.
Abstract:The scene graph generation (SGG) task aims to detect visual relationship triplets, i.e., subject, predicate, object, in an image, providing a structural vision layout for scene understanding. However, current models are stuck in common predicates, e.g., "on" and "at", rather than informative ones, e.g., "standing on" and "looking at", resulting in the loss of precise information and overall performance. If a model only uses "stone on road" rather than "blocking" to describe an image, it is easy to misunderstand the scene. We argue that this phenomenon is caused by two key imbalances between informative predicates and common ones, i.e., semantic space level imbalance and training sample level imbalance. To tackle this problem, we propose BA-SGG, a simple yet effective SGG framework based on balance adjustment but not the conventional distribution fitting. It integrates two components: Semantic Adjustment (SA) and Balanced Predicate Learning (BPL), respectively for adjusting these imbalances. Benefited from the model-agnostic process, our method is easily applied to the state-of-the-art SGG models and significantly improves the SGG performance. Our method achieves 14.3%, 8.0%, and 6.1% higher Mean Recall (mR) than that of the Transformer model at three scene graph generation sub-tasks on Visual Genome, respectively. Codes are publicly available.
Abstract:Abundant real-world data can be naturally represented by large-scale networks, which demands efficient and effective learning algorithms. At the same time, labels may only be available for some networks, which demands these algorithms to be able to adapt to unlabeled networks. Domain-adaptive hash learning has enjoyed considerable success in the computer vision community in many practical tasks due to its lower cost in both retrieval time and storage footprint. However, it has not been applied to multiple-domain networks. In this work, we bridge this gap by developing an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH. Specifically, we develop four {task-specific yet correlated} components: (1) network structure preservation via a hard groupwise contrastive loss, (2) relaxation-free supervised hashing, (3) cross-domain intersected discriminators, and (4) semantic center alignment. We conduct a wide range of experiments to evaluate the effectiveness and efficiency of our method on a range of tasks including link prediction, node classification, and neighbor recommendation. Our evaluation results demonstrate that our model achieves better performance than the state-of-the-art conventional discrete embedding methods over all the tasks.
Abstract:Learning accurate low-dimensional embeddings for a network is a crucial task as it facilitates many downstream network analytics tasks. For large networks, the trained embeddings often require a significant amount of space to store, making storage and processing a challenge. Building on our previous work on semi-supervised network embedding, we develop d-SNEQ, a differentiable DNN-based quantisation method for network embedding. d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information and is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed. We also propose a new evaluation metric, path prediction, to fairly and more directly evaluate model performance on the preservation of high-order information. Our evaluation on four real-world networks of diverse characteristics shows that d-SNEQ outperforms a number of state-of-the-art embedding methods in link prediction, path prediction, node classification, and node recommendation while being far more space- and time-efficient.
Abstract:Scene graphs provide valuable information to many downstream tasks. Many scene graph generation (SGG) models solely use the limited annotated relation triples for training, leading to their underperformance on low-shot (few and zero) scenarios, especially on the rare predicates. To address this problem, we propose a novel semantic compositional learning strategy that makes it possible to construct additional, realistic relation triples with objects from different images. Specifically, our strategy decomposes a relation triple by identifying and removing the unessential component and composes a new relation triple by fusing with a semantically or visually similar object from a visual components dictionary, whilst ensuring the realisticity of the newly composed triple. Notably, our strategy is generic and can be combined with existing SGG models to significantly improve their performance. We performed a comprehensive evaluation on the benchmark dataset Visual Genome. For three recent SGG models, adding our strategy improves their performance by close to 50\%, and all of them substantially exceed the current state-of-the-art.
Abstract:Human-Object Interaction (HOI) detection is a fundamental visual task aiming at localizing and recognizing interactions between humans and objects. Existing works focus on the visual and linguistic features of humans and objects. However, they do not capitalise on the high-level and semantic relationships present in the image, which provides crucial contextual and detailed relational knowledge for HOI inference. We propose a novel method to exploit this information, through the scene graph, for the Human-Object Interaction (SG2HOI) detection task. Our method, SG2HOI, incorporates the SG information in two ways: (1) we embed a scene graph into a global context clue, serving as the scene-specific environmental context; and (2) we build a relation-aware message-passing module to gather relationships from objects' neighborhood and transfer them into interactions. Empirical evaluation shows that our SG2HOI method outperforms the state-of-the-art methods on two benchmark HOI datasets: V-COCO and HICO-DET. Code will be available at https://github.com/ht014/SG2HOI.